

EXPLOSIVE ZONE (EX-1) GROUNDWATER REMEDIATION: MONITORING, CONTROL, AND SAFETY MANAGEMENT

Karel Waska, EPS Biotechnology, Czech Republic, karel.waska@epssro.cz

International Conference CONTAMINATED SITES 2016 Bratislava, 12. – 13. 09. 2016

Introduction

ISCO

PCR

Site

Pollution

Lab

Pilot

Take-home message:

1. When the time and complex surface conditions limit the remediation efforts, ISCO offers a quick and definite solution.

2. Molecular Microbiology techniques provide boundary conditions for bioremediation finish.

Introduction

ISCO

PCR

Site

Pollution

Lab

Pilot

Acknowledgements

- Mgr. Jiří Kamas
- Ing. Petr Beneš, Ph.D.
- Ing. Karel Horák
- Ing. Miroslav Minařík
- Ing. Vlastimil Píštěk

In situ chemical oxidation

ISCO

PCR

Site

Pollution

Lab

Pilot

Siegrist, R. L., Crimi, M., Simpkin, T. J.: In Situ Chemical Oxidation for Groundwater Remediation, Springer 2011, ISBN: 978-1-4419-7825-7

Summary

Why ISCO??

ISCO

Cost:

Often most effective alternative

PCR

Time:

Quick results, usually within weeks or months

Site

Target pollutants:

Pollution

Wide spectrum = chlorinated solvents, petroleum-derived hydrocarbons, ...

Lab

Contamination range:

Pilot

Broad range of concentration levels including heavily impacted sites (biodegradation processes inhibited)

Summary

Fenton's Reagent

ISCO

Fenton's reaction:

PCR

 Described in mammal heart cells (*Ischemic heart dissease)

Site

 Reaction between hydrogen peroxide and ferrous ions generating OH* radicals:

Pollution

$$Fe^{2+} + H_2O_2 + H^+ \rightarrow Fe^{3+} + HO^{\bullet} + H_2O$$

 $Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HOO^{\bullet} + H^+$

Lab

$$C_aH_bX_c + Fe^{2+} + xH_2O_2 \rightarrow Fe^{3+} + cX^- + aCO_2 + 2H_2O + bH^+$$

Pilot

Exothermal reaction !!!

C. -- - 02016

= = = U2016
 = = = 02016
 = = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016
 = 02016

Modified Fenton?

ISCO

$$H_2O_2 =>$$

PCR

Cheap, very strong oxidant (ROS)

Site

INSTABILITY

Pollution

Fast disintegration, exothermic decay (!!)

Lab

Produces large amounts of gas: O₂ & VOCs

Pilot

STABILIZATION = critical know-how:

 Addition of stabilizer (phosphates, chelates, organic acids = pH drops)

Summary

Polymerase Chain Reaction

ISCO

= photocopying of target gene sequences

PCR • Living or dead cells (no cultivation bias)

Site

Real-Time qPCR

Pollution

 Quantification of target gene sequences => comparison among samples:

Lab

- Whole genome screening 16S rDNA
- Denitrification coding genes NirK, NirS

Pilot

For enhanced attenuation <u>potential assessment</u>

ISCO

PCR

Site

Pollution

Lab

Pilot

Google Earth

Summary

Sandy gravel aquifer

ISCO

• $K \approx 10^{-5} - 10^{-4} \text{ m/s}$

PCR

 Aquifer thickness ~1,5 m

Site

Pollution

Porosity n = 0,15
 Field A

Lab

•530 m²

• V~120 m³

Pilot

Summary

Primary pilot test objectives

ISCO

- 1. To verify technology functionality and usability,
- 2. to reduce contamination levels,

PCR

3. to comply with rigorous safety regulations (EX-1), and

Site

to optimize on site process and reaction control tools (real time monitoring).

Pollution

Studied risk factors

Lab

- 1. Exothermic reaction course,
- 2. reagent corrosiveness (maintain pH ≥ 4,5 and g.w. level below the depth of utility networks), and

Pilot

3. generation of VOCs as daughter products.

Intro	Wide ra	ange of petroc	hemical operation	biotechnology
ISCO	• Ethy	lene productio	n => pollutants: llene, Non-polar	
PCR	HV-8857: pollutant evolution			
Site	Date	Benzene[µg/l]	Naphthalene[µg/l]	NOC[mg/l]
Poll	ution	RC 400 TC 2500	1700 2500	no FPLH 10
Lab	2004 2006	- 125 000	- <0,5	FPLH >200
Pilot	2013* *(pre-pilot)	10 300	162	13,2

Soil & g.w. matrix – buffering capacity

ISCO

PCR

Site

Pollution

- 5% hydrogen peroxide (H₂O₂)
- FeSO₄ · n H₂O
- C₆H₈O₇ (Citric acid) => Temperature increase < 4°C

Pilot

The option for biodegradation finish was verified...

Summary

12.11.2013 - 28.1.2014:

- ISCO
- 7 phases:

- **PCR**
- 77 m³ (5% H₂O₂): areal & pointed injection

- Site
- Gw. pump-and-treat between the phases (after rxn' fade out) => filtration & recirculation
- **Pollution**
- Soil air pump-and-treat => filtration
- *In situ* real-time monitoring: Temp., gw. level, EC
- Lab
- Field on site monitoring: Physicochemical parameters, Cs & H₂O₂ concentrations

Temp. and g.w. level - Safety

Site

Pollution

Lab

MFR application Well empty

G.w. pumping

Summary

pH - Safety

ISCO

PCR

Site

Pollution

Lab

Pilot

pН MFR application MS-8805 -HV-8857 → MS-8801

Summary

VOCs – Safety

ISCO

PCR

Site

Pollution

Lab

EPS biotechnology

Intro

ORP – Effectiveness

ISCO

PCR

Parallel with the DO parameter

Site

Pollution

Lab

Summary

ISCO

PCR

Site

Pollution

Lab

Pollutant destruction

*Before pilot test -A, C, EAfter pilot test -B, D, F

02010

Summary

Microbial Metabolic Potential

EPS

AS-8802

AS-8805

◆MS-8807 - • VS-8808

HV-8857

MS-8803

VS-8804 - PV-8803

AS-8801

AS-8804 VS-8807

MS-8806

MS-8802

AS-8811

MS-8805

ISCO

PCR

Enhanced attenuation:

Nutrients and TEA

Site

Pollution

Lab

Summary

Primary pilot test objectives:

1. Technology verification,

isco • 2. reduction of contamination levels,

→ 3. rigorous safety regulations (zone EX-1), and

PCR 4. Control tools optimisation (real time monitoring).

Site

Studied risk factors:

Pollution

1. Exothermic rxn': Temp. increase less than 5°C

2. Corrosiveness: pH > 4,5 & g.w. level below the level of utility networks

Lab

3. VOCs generation: concentration decrease along time

Pilot Enhanced attenuation potential => denitrification

