

Reduction, Adsorption, and Precipitation of Heavy Metals by Elemental Iron, Iron Sulfides, and Related Reactive Minerals

A New Approach to Treatment of Heavy Metals

<u>Mike Mueller</u>, Dr. Alan Seech PeroxyChem Environmental Solutions, Austria mike.mueller@peroxychem.com

International Conference CONTAMINATED SITES 2016 Bratislava, 12. – 13. 09. 2016

Presentation Outline

- Background: Definitions, MetaFix[®] composition, features, dosage, and application methods
- Chemistry: Solubility and Stability of Heavy Metal Hydroxides, Heavy Metal Sulfides, and Heavy Metal Iron Sulfides
- Treatment Mechanisms: Focus on major heavy metals
- Bench-scale Tests: Some results from comparisons of MetaFix and other reagents, mixed metals, and metals with cVOCs
- Case Studies: Mercury and Lead

Our business model...

Field-Proven Portfolio of Remediation Technologies for Impacted Soil and Groundwater

In Situ Chemical Oxidation

Klozur (persulfates)
 Klozur CR (persulfate + calcium peroxide)

In Situ Chemical Reduction

3. EHC (ZVI + plant carbon)

4. EHC Liquid (organo-iron + lecithin)

5. Daramend (ZVI + plant carbon)

Aerobic Bioremediation

6. Terramend (nutrients)7. PermeOx Ultra (calcium peroxide)

Reduction, Adsorption, Precipitation 8. EHC Metals and MetaFix

Enhanced Reductive Dechlorination

9. ELS (lecithin)

<u>NAPL Stabilization/Mass Flux Reduction</u> 10. ISGS (modified permanganate)

Some Definitions

- Adsorption: Binding of a soluble species on the surface of a solid, driven by surface forces.
- **Co-precipitation**: A form of adsorption in which soluble species are bound onto the surfaces of a precipitating solid phase. The operative adsorption force can be chemi-, physico-, van der Waals, or by dipole-dipole interactions. An example is capture of heavy metals during precipitation of iron corrosion products such as iron oxides.
- **Precipitation**: Conversion of a soluble metal into an insoluble form by addition of a chemical to create a supersaturated environment. An example is conversion of aqueous lead (Pb⁺²) into lead sulfide (Galena) by enriching the contaminated environment with sulfide (S⁻²).
- Solidification/Stabilization: Incorporation of a metal into a cement-like matrix to make it less subject to leaching by reducing permeability. The techniques are aimed at physico-chemical fixation and immobilization of metals in-situ. E.g. treating metal contaminated soil or sludge with lime, Portland cement or fly ash.

MetaFix[®] is a new family of solid, injectable, reagents designed to promote removal of heavy metals in soil and groundwater using chemical reduction, precipitation, and adsorption.

- 1. Reagents do not rely on *in situ* biological sulfate reduction or carbon metabolism so their performance is not inhibited by high acute toxicity (e.g., alkalinity, acidity, salts, high COI concentrations)
- 2. Composed of ZVI, iron sulfides, iron oxides, iron oxyhydroxides, alkaline earth carbonates, aluminosilicates, and activated carbon
- 3. Treatment results in conversion of aqueous heavy metals to low solubility mineral precipitates with broad pH stability
- 4. Customized formulations provided for special site conditions such as high acidity or alkalinity

- **ZVI**: A reductant; Long lasting source of Fe⁺²
- Iron Sulfides: A source of soluble sulfide and Fe⁺², Acts as a catalyst;
 Provides both cationic and anionic adsorption surfaces; Can make aqueous iron more reactive
- Iron Oxides & Oxyhydroxides: Provide both cationic and anionic surfaces;
 Adatoms of ferrous iron are very reactive
- **Calcium Carbonate**: For pH balance and source of carbonate
- Activated Carbon: A strong adsorbent to address organically-bound metals including arsenic, mercury, and nickel
- **Supplementary reagents**: For ion exchange, pH modification when needed; Inclusion based on results of bench-scale work optimization

Low Dosage Rates

- 1.0% 6.0% (wt/wt) for soil
- 0.1% 1.0% (wt/wt) for groundwater

Application by soil mixing, trenching, or injection (40 – 50% solids)

Low-cost Treatability Testing available

- Goals are to determine proper dosages, and
- to inform the bespoke formulation required (€ 1900 / 3 weeks)

Metal	Precipitation as Metal Hydroxides or Iron Metal Hydroxides	Precipitation as Metal Sulfides/Iron Metal Sulfides	Adsorption and Co- precipitation with Iron Corrosion Products	Precipitation as Metal Carbonates	Adsorption of organo-metal species
As (III, V)		•	•		•
Cr(VI)	•		•		
Pb, Cd, Ni	•	•	•	•	•
Cu, Zn	•	•	•		
Se	•	•	•		
Hg		•	•		•

Aqueous Solubilities of Heavy Metal Hydroxides, Iron Hydroxides, and Sulfides

EPA 625/8-80-003, 1980; Environ. Sci. Technol. 1988, 22, 972-977

- Reduction of Cr⁺⁶ to Cr⁺³ by ZVI is followed by its precipitation as mainly mixed Fe-Cr oxyhydroxides with a mineral structure similar to that of goethite (α-FeOOH) with some Cr⁺³ also deposited into a hematite-like structure (Fe₂O₃).^{1,2}
- Solubility of Fe-Cr oxyhydroxides is less than 5 ppb over a broad pH range of 5.0 to 12.0³

$$Fe_{[solid]}^{0} + CrO_{4}^{2-} + 8H^{+} \rightarrow Cr^{+3} + Fe^{3+} + 4H_{2}O$$
(1)
(1-x) Fe³⁺ + (x) Cr³⁺ + 4H_{2}O \rightarrow Fe_{(1-x)}Cr_{(x)}OOH_{[solid]} + 3H^{+}(2)

- The Fe-Cr oxide which has the form of hematite (Fe₂O₃) is primarily deposited on the surface of precipitates²
 - 1. Blowes et al., 2000. J. Contam. Hydrol. 45: 123-137
 - 2. Tratnyek et al., 2003. In: Tarr, M. Chemical Degradation Methods for Wastes and Pollutants
 - 3. Eary and Rai. 1988. Env. Sci. Technol. 22:972-977.

Aqueous Solubilities of Heavy Metal Hydroxides, Iron Hydroxides, and Sulfides

EPA 625/8-80-003, 1980; Banerjee et al., 2013. Veolia Water Inc. Environ. Sci. Technol. 1988, 22, 972-977

Independent Evaluation of MetaFix Reagents

for Treatment of Chromium and Nickel in Groundwater

Daniel Cassidy, Ph.D. Western Michigan University Department of Geosciences 1187 Rood Hall Kalamazoo, Michigan USA 49008-5241 Phone: 1-269-873-0016 E-mail: daniel.cassidy@wmich.edu

Doug Gray, CGWP AECOM

Innovative Remedial Technologies Group Manager, Midwest DCS Phone: 1-216-622-2283 1375 Euclid Avenue, Suite 600 Cleveland, Ohio USA 44115 doug.gray@aecom.com

Influence of MetaFix and Calcium Polysulfide on SPLP Chromium and Nickel in soil/groundwater slurry

D. Cassidy, WMU., D. Gray AECOM. 2014

Influence of "EHC-Metals" and "MetaFix" reagents on TCLP Lead and Arsenic

15

	Total Meta	ls (mg/kg)	TCLP-Metals (mg/L)				
Sample ID	Arsenic	Lead	Arsenic	Lead			
IAS-1	475	16	2.46	0.083			
IAS-2	1570	5.6	4.80	< 0.030			

Sample	Progent	Dose	TCL	P-Metals (m	Percent Reduction (%)		
ID	Reagent	(wt%)	Final pH	Arsenic	Lead	Arsenic	Lead
	Untreated	0	5.14	2.46	0.083		
	EHC-M	2	4.98	0.042	0.014	98.3	83.1
	EHC-M	4	5.15	0.087	0.019	96.5	77.1
IAS-1	MetaFix I-6A	2	5.14	0.019	<0.005	99.2	97.0
	MetaFix I-6A	4	5.48	0.009	<0.005	99.6	97.0
	MetaFix I-7	2	5.27	0.017	0.013	99.3	84.3
	MetaFix I-7	4	5.21	0.010	<0.005	99.6	97.0
	Untreated	0	5.04	4.80	< 0.030		
	EHC-M	2	5.20	0.12	<0.005	97.5	
	EHC-M	4	5.27	0.13	0.014	97.3	
IAS-2	MetaFix I-6A	2	5.33	0.061	0.011	98.7	
	MetaFix I-6A	4	5.43	0.022	<0.005	99.5	
	MetaFix I-7	2	5.19	0.033	<0.005	99.3	
	MetaFix I-7	4	5.24	0.026	0.011	99.5	

Batch study, 10.0 g soil + 200 mL groundwater, 7 days incubation,

Table 1. Influence of control and treatment on heavy metal concentrations.

Biotic Control

Date	Day	ba D Cr (diss)	a bordia T	a B Te (diss)	mg K (diss) T	a a T	a B T	a borna (diss) T	mg T	da Sb (diss) T	a Sr (diss) T	mg Zn (diss)
10-Apr-14	0	149	0.0317	0.139	1.91	90.9	1.75	296	1.77	< 0.002	0.438	0.014
10-Api-14		115	0.0331	0.039	1.93	90.8	1.8	294	1.88	< 0.002	0.441	0.01
9-Jul-14	90	106	0.0225	0.064	1.89	93.2	1.55	304	1.7	< 0.002	0.43	0.032
9-Jul-14		108	0.0247	0.043	1.85	91.7	1.53	303	1.7	< 0.002	0.432	0.037

MetaFix[®] I-6

07-May-14 27	27	0.0027	0.0264	0.526	361	353	10.1	345	0.377	< 0.002	0.345	0.02
	21	7.94	0.0371	0.121	438	353	3.07	342	0.451	< 0.002	0.243	0.003
04-Jun-14	55	0.002	0.0048	6.17	378	351	10.9	352	0.235	< 0.002	0.262	0.008
		0.0021	0.0056	7.46	366	363	11.2	356	0.231	< 0.002	0.266	0.002
09-Jul-14	90	0.0036	0.0124	18.2	707	525	7.5	399	0.249	< 0.002	0.284	0.008
		0.0025	0.0114	17.4	561	459	7.14	380	0.24	< 0.002	0.316	< 0.002

Table 1. Influence of control and treatment on VOC concentrations in microcosms.

Biotic Control

Date	Day	TCE	cDCE	VC	Ethene	Ethane	CF	DCM	СМ	Methane
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
10-Apr-14	0	1.6	<0.010	<0.010	<0.010	0.013	0.25	<0.010	<0.010	0.27
10-Api-14	0	1.6	<0.010	<0.010	<0.010	0.014	0.25	<0.010	<0.010	0.29
04-Jun-14	55	1.5	<0.010	<0.010	<0.010	<0.010	0.25	<0.010	<0.010	0.076
		1.5	<0.010	<0.010	<0.010	<0.010	0.26	<0.010	<0.010	0.079
09-Jul-14	90	1.5	<0.010	<0.010	<0.010	<0.010	0.24	<0.010	<0.010	0.051
		1.5	<0.010	<0.010	<0.010	<0.010	0.27	<0.010	<0.010	0.08

MetaFix® I-6

10-Apr-14	0	1.6	< 0.010	<0.010	<0.010	<0.010	0.16	<0.010	<0.010	0.15
	0	1.4	<0.010	<0.010	<0.010	<0.010	0.16	<0.010	<0.010	0.18
07-May-14	27	0.27	0.02	<0.010	0.029	0.017	0.063	<0.010	<0.010	0.081
07-1viay-14		0.62	0.011	<0.010	0.024	0.014	0.12	<0.010	<0.010	0.11
04-Jun-14	55	0.051	<0.010	<0.010	0.052	0.021	0.022	0.017	<0.010	0.099
04-5011-14		0.022	<0.010	<0.010	0.047	0.023	0.011	<0.010	<0.010	0.13
09-Jul-14	90	0.017	<0.010	<0.010	0.046	0.022	<0.010	0.023	<0.010	0.094
		0.013	<0.010	<0.010	0.04	0.023	<0.010	0.021	<0.010	0.12

Mercury Treatment to Non-Detect SPLP Levels

at a Redeveloped Former Industrial Site

- Mercuric chloride was used as a catalyst at former chemical industry facility.
- Total soil Hg concentrations ranged from 300 - 420 mg/kg.
- Remedial Goal to stabilize the soil, and then dispose treated material at an offsite landfill.
- Site to be developed for residential use, mandating SPLP Mercury of < 1 ppb.

Mercury Treatment to Non-Detect SPLP Levels at Former Industrial Site

Pilot-scale demonstration was conducted in four treatment cells

- MetaFix dosages of 0.5%, 1.0% and 2.0% (w/w) were compared in 100 ton batches
- MetaFix blended with soil using excavator bucket followed by additional mixing with a screening bucket
- Water added to adjust the moisture content close to the saturation level
- Soil was covered with a tarp during 7 day reaction period
- No difference observed between dosages, so the lowest dosage (0.5% w/w) selected for use at full-scale

Hg treated to non-detect levels of <1.0 µg/L in response to low, moderate, and highest dosages

Mercury Treatment to Non-Detect SPLP Levels at Former Industrial Site

Full-scale Treatment Process

- The MetaFix dosage of 0.5% (w/w) used for the full-scale treatment
- Full scale implementation utilizes an integrated soil mixing system where soil crushing/screening and reagent dosing/mixing are completed in a single process
- 500 ton batches
- Treatment time of 7 days
- Repeated achievement of the site specific remedial goal for mercury (1.0 μg/L SPLP)

MetaFix Case Study 2: Lead

Ex Situ Treatment of Industrial Process Waste

- Sand blasting residue from remediation of buildings painted with lead based paint
- MetaFix dosage at 6.0 % (w/w)
- Direct soil mixing with excavator
- Soil water content set to 80% of WHC (wet, not saturated)
- 7 day treatment time

Environmental

Solutions

- Previous attempts at treatment with lime + iron salts + fly ash at 40% (w/w) were ineffective
- Remedial objective for lead was achieved (0.75 mg/L TCLP)

PeroxyChem

TCLP lead reduced from 11.7 mg/L to 0.22 mg/L

- 1. <u>Lower solubility of heavy metal precipitates</u> based on iron and iron-sulfide chemistry provides high <u>assurance of attaining remedial goals</u>.
- 2. <u>Not dependent on alkalinity</u> for removal of metals. Broad pH range stability of metal precipitates based on iron and iron-sulfide chemistry <u>reduces the danger of rebound</u>.
- 3. Proven ability to address <u>multiple heavy metals</u> including: Al, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Tc(VII), V, and Zn. Superior Cr(VI) treatment with the formation of more stable mixed (Cr, Fe) hydroxides.
- 4. Ability to treat heavy metals successfully at sites where the soil/groundwater has <u>high acute toxicity</u>.
- 5. <u>Capable of treating comingled plumes</u>. Simultaneous removal of soluble heavy metals, and dehalogenation of chlorinated solvents.
- 6. <u>Longevity</u> of treatment (micro-scale ZVI and FeS estimated > 10 years).
- Low overall treatment costs based on lower reagent dosing rates, as low as 0.1% 4% (wt/wt), versus other metals treatment technologies.

Thank you for your attention.

E: mike.mueller@peroxychem.com T: +43 664.180.3060

Soil & Groundwater Remediation - EMEA

©2016 PeroxyChem, MetaFix, Daramend, Terramend, EHC, ELS, and PermeOx are trademarks of PeroxyChem or its subsidiaries. All rights reserved