

SLOVAK ENVIRONMENT AGENCY

is implementing an activity

INTERNATIONAL CONFERENCE

CONTAMINATED SITES 2018

BANSKÁ BYSTRICA, SLOVAK REPUBLIC, 8 – 10 OCTOBER 2018

The activity has been implemented within the framework of national project Information and providing advice on improving the quality of environment in Slovakia.

The project is cofinanced by Cohesion Fund of the EU under Operational programme Quality of Environment.

www.op.kzp.sk www.minzp.sk www.sazp.sk 1

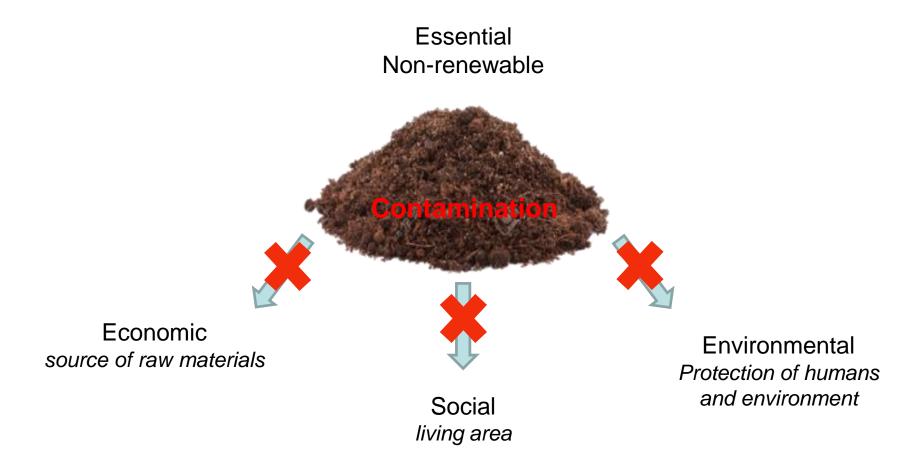
Influence of two amendments on phyto- and sanitary availability of metals in highly contaminated soils: a greenhouse study

Janus Adeline

LGCgE – Yncréa Hauts-de-France, France

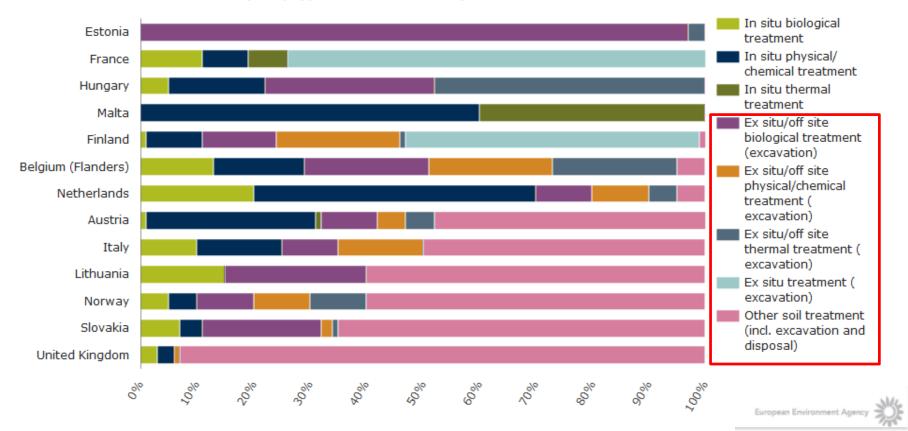
adeline.janus@yncrea.fr

The activity has been implemented within the framework of national project
Information and providing advice on improving the quality of environment in Slovakia.
The project is cofinanced by Cohesion Fund of the EU under Operational programme Quality of Environment.



Introduction

Context


In 2006, 39 countries (Europe):

- 3 million of sites: pollutant activities
- 1.8 million of sites: potentially contaminated

Introduction

Context

Chart — Most frequently applied remediation techniques for contaminated soil

- > Inappropriate:
- ✓ Considerable disturbances
- ✓ Expensive
- ✓ Economically unfeasible on a large scale

Introduction

Context

➤ New technic: adding amendments to decrease the metal availability phosphate compounds, liming materials, metal oxides, biochar ... used alone or in combination

Objective of the work:

Evaluate the ability of two amendments (biochar and iron grit) to immobilize metals in contaminated soils under greenhouse conditions

Soils and amendments

MAZ:

- Brownfield soil
- Old settling bassin (plastic industry)

ME:

- Agricultural soil
- Near a former lead smelter

	Cd	Pb	Zn	Cu	pH_{water}	Corg	Total CaCO ₃
	mg kg ⁻¹ DW					g kg ⁻¹	g kg ⁻¹ DW
MAZ	5	84	658	86	7.9	48	438
ME	15	812	1016	37	7.5	18	4
Threshold*	0.7	24	62	12			

^{*} Usual concentrations in agricultural soils

Soils and amendments

MAZ:

- Brownfield soil
- Old settling bassin (plastic industry)

Biochar (BC):

- Made from hardwood plants
- 400°C 12 h
- < 4 mm

ME:

- Agricultural soil
- Near a former lead smelter

Iron grit (IG):

- -0.12 0.30 mm
- Fe: 98.3 %

	Cd	Pb	Zn	Cu	pH _{water}	CEC
	(mg kg ⁻¹ DW)					(cmol+ kg-1)
ВС	1.0	24.2	12	12	8.4	0.9
IG	0.5	25.8	168	2490	10.4	-

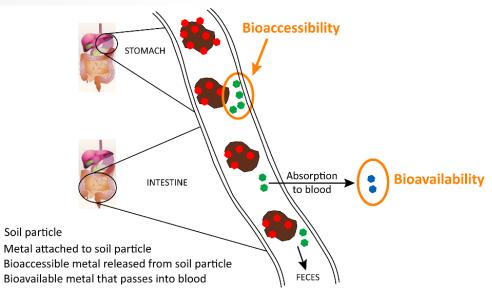
Experimental setup

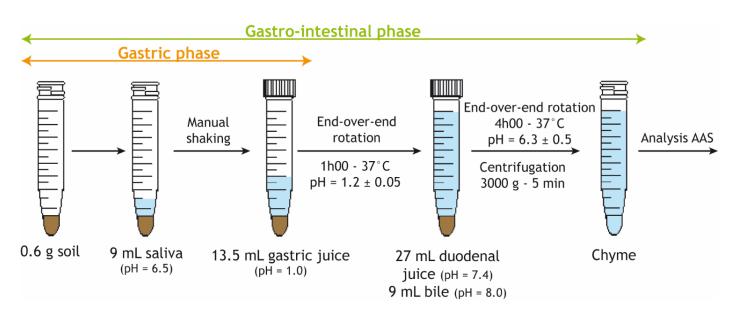
4 treatments for each soil (2.1 kg pot⁻¹):

- 1) Untreated soil (T)
- 2) Soil + 2% (w/w) BC (BC)
- 3) Soil + 1% (w/w) IG (IG)
- 4) Soil + 2% (w/w) BC + 1% (w/w) IG (BC/IG)

Equilibrium in greenhouse during 5 weeks (75 % WHC)

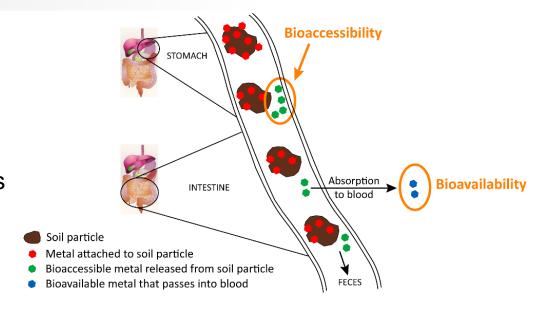
1.5 g of ryegrass (*lolium perenne*)


Harvest 6 weeks after sowing


Analyses

Soils:

- 1) Physico-chemical parameters (pH, CEC, total CaCO₃, Corg)
- 2) Metal pseudototal concentrations
- 3) Oral bioaccessibility (UBM test)


9

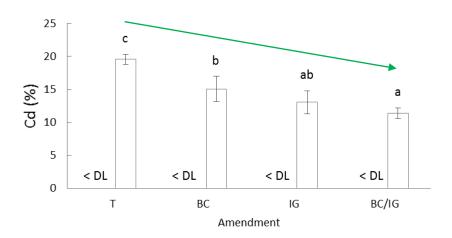
Analyses

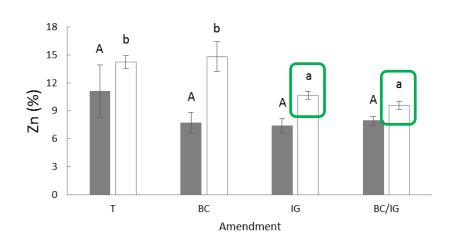
Soils:

- 1) Physico-chemical parameters (pH, CEC, total CaCO₃, Corg)
- 2) Metal pseudototal concentrations
- 3) Oral bioaccessibility (UBM test)

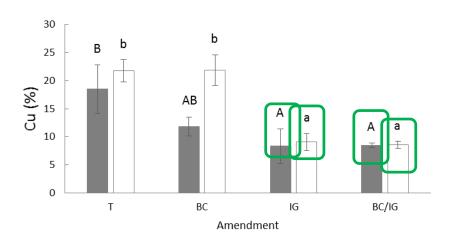
Plants:

- 1) Aerial biomass
- 2) Metal concentrations in shoots



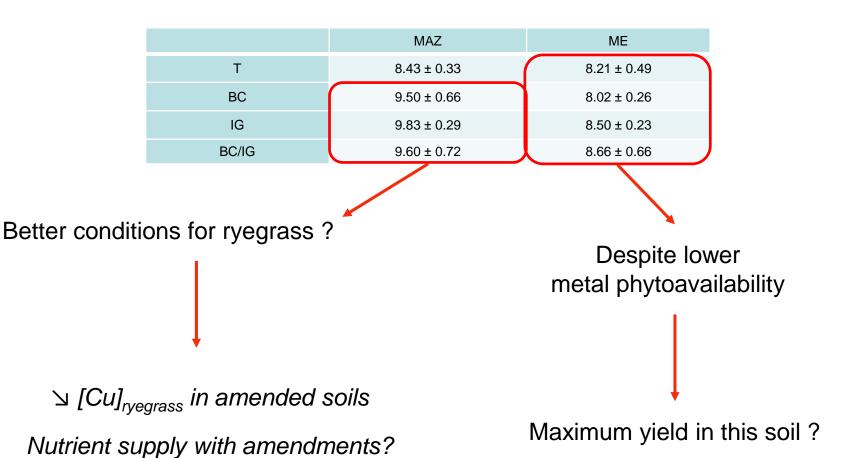

Soil physicochemical parameters

MAZ	Unamended	2 % Biochar	1 % Iron Grit	2 % Biochar + 1 % Iron Grit
pH_{water}	7.85 ± 0.05	7.93 ± 0.04	7.90 ± 0.02	7.94 ± 0.04
Total CaCO ₃ (g kg ⁻¹)	457 ±19	441 ± 15	475 ± 7	380 ± 28
Corg (g kg ⁻¹)	44.5 ± 3.4	40.7 ± 5.9	47.4 ± 10.7	44.7 ± 2.2
CEC (cmol+ kg-1)	7.9 ± 0.5	6.7 ± 0.6	7.5 ± 0.1	7.5 ± 0.2
Cd (mg kg ⁻¹ DW)	3.4 ± 0.8	4.2 ± 0.2	3.9 ± 0.4	3.7 ± 0.3
Pb (mg kg ⁻¹ DW)	62.4 ± 25.3	76.5 ± 9.5	87.2 ± 9.7	73.3 ± 5.3
Zn (mg kg ⁻¹ DW)	456 ± 99	531 ± 41	537 ± 67	503 ± 19
Cu (mg kg ⁻¹ DW)	52.4 ± 15.6	65.1 ± 5.7	98.4 ± 33.4	80.6 ± 5.5

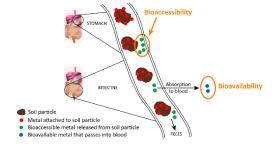

ME	Unamended	2 % Biochar	1 % Iron Grit	2 % Biochar + 1 % Iron Grit
pH _{water}	7.97 ± 0.13	7.90 ± 0.06	7.98 ± 0.04	8.02 ± 0.03
Total CaCO ₃ (g kg ⁻¹)	2.96 ± 0.30	3.59 ± 0.79	2.43 ± 0.36	3.53 ± 0.38
Corg (g kg ⁻¹)	17.60 ± 1.26	17.02 ± 0.99	19.43 ± 0.64	20.36 ± 0.74
CEC (cmol+ kg ⁻¹)	12.58 ± 0.76	12.00 ± 0.41	12.32 ± 0.65	11.80 ± 0.21
Cd (mg kg ⁻¹ DW)	13.8 ± 0.2	13.5 ± 0.2	12.9 ± 0.4	12.5 ± 1.0
Pb (mg kg ⁻¹ DW)	763 ± 12	755 ± 20	690 ± 32	671 ± 42
Zn (mg kg ⁻¹ DW)	971 ± 23	953 ± 31	893 ± 18	885 ± 18
Cu (mg kg ⁻¹ DW)	32.0 ± 0.6 a	30.8 ± 1.8 a	51.9 ± 10.1 b	51.4 ± 3.9 b

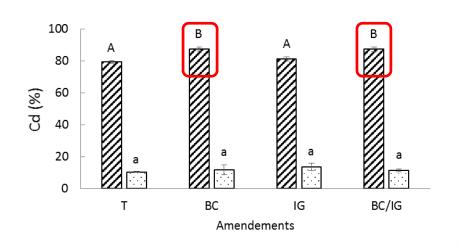
Metal phytoavailability

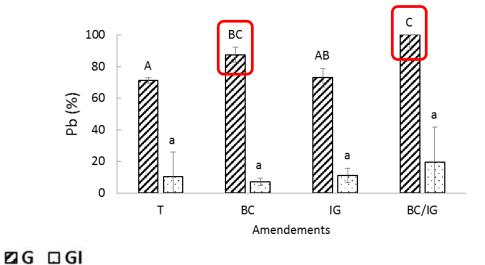
■ MAZ □ ME


- > MAZ:
 - ✓ ∨ with IG (alone or in combination) for Cu
- ➤ ME:
 - ✓

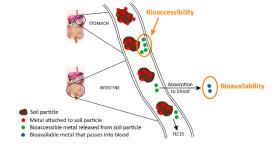
 ✓ with the 3 amendments for Cd
 - ✓

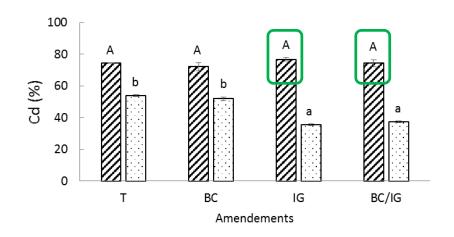

 ✓ with IG (alone or in combination)
 for Zn and Cu

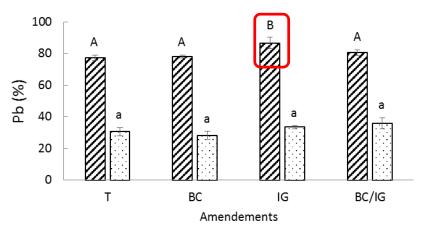

 12

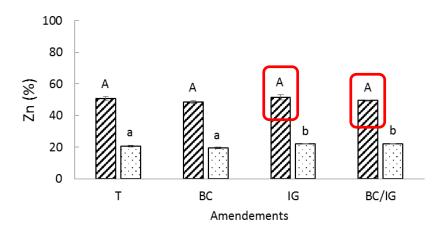

Plant biomass (g pot⁻¹)

Oral bioaccessibility - MAZ soil

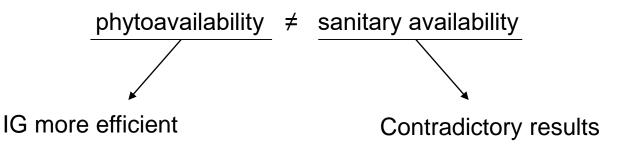







- Gastric phase:
 - ✓ ✓ with BC (alone or in combination) for Cd, Pb and Zn
 - ✓ 🔰 with IG for Zn
- Gastrointestinal phase:
 - ✓ No effect

Oral bioaccessibility - ME soil


- ØG □GI
 - > Gastric phase:
 - ✓ ✓ with IG for Pb
 - ➤ Gastrointestinal phase:
 - ✓ ∨ with IG (alone or in combination) for Cd
 - ✓ ✓ with IG (alone or in combination) for Zn 15

Conclusion

MAZ	ME				
Phytoavailability					
IG : ∖ Cu	BC/IG : ↘ Cd				
IG. VCu	IG : ∖ Zn and Cu				
Biomass					
IG: ↗	/				
Oral bioaccessibility : gastric phase					
BC : ↗ Cd, Pb and Zn	IG : ↗ Pb				
IG : ∖ Zn	IG. / PD				
Oral bioaccessibility : gastrointestinal phase					
	IG : ↘ Cd				
1	IG : ⊅ Zn				

Conclusion

1. Different efficiency according to the soil and the metal tested

2. Tests should be choose according to the future use of the site

3. Importance of *ex situ* tests before applying amendments in the field

Thank you for your attention

Janus Adeline
LGCgE – Yncréa Hauts-de-France, France
adeline.janus@yncrea.fr

