

DEVELOPING PERENNIAL PHYTOTECHNOLOGY FOR CONTAMINATED MILITARY SITE: CASE OF KAMENETZ-PODILSKY, UKRAINE

Valentina Pidlisnyuk (UJEP, Czech Republic), Tetyana Stefanovska (NULES Ukraine), Josef Trögl(UJEP, Czech Republic), Pavlo Shapoval (NULP, Ukraine)

International Conference Contaminated Sites 2016 Bratislava 12-13 September

Projects involved:

Finished:

- NATO SPS Planning Grant #984687 "New technology for phytoremediation of military contaminated sites" (2014-2015)
- On-going:
- NATO SPS MYR G4687 "Military Site Cleaning" (2016-2018)
- Scientific Project from the Ministry of Education and Science, Republic of Kazakhstan (2015-2017) –bilateral IPBB and UJEP
- FEMS from European Federation of Microbiology Society, bilateral UJEP-TUBAF FU

Submitted for funding:

 Sustainable management of post-mining areas - institutional cooperation for strengthening of Czech-Saxony cross-border region (INSTANT)/ Bergbaufolgeflächen nachhaltig bewirtschaften – Institutionelle Zusammenarbeit zur Stärkung des Grenzgebietes Sachsen-Tschechien (INSTANT)- under reviewing

UJEP, Czech Republic NULES and NULP, Ukraine KSU, USA KAES, USA IPBB, Kazakhstan Liasoing institutions: UZ, Croatia WULEC, Poland WMU, Poland

The primary goals

- to improve environmental security by developing methods to produce biomass in large quantities on contaminated military lands

- to improve soil effectively and efficiently

Research sites for developing biotechnology

Ukraine

Kamenetz-Podilsky, since 2014 ATO zone: Mariinka and Kurakhovo, since 2016

Czech Republic

Mimon, since 2016

USA

USA- Fort Riley, since 2015

Directions of current research:

UJEP, Czech Republic

- Using microbiology indicators: phospholipid fatty acids and enzymes for assessment changing in military contaminated soil's ecosystem during application of phytotechnology
- First year semi field experiment on growing
 M.xgiganteus at the soil from Mimon
- Biomass production-impact of soil

KSU and KAES, USA

- Testing appropriate soil amendments or amendment mix to optimize production of miscanthus, improve soil quality, and/or reduce bioaccessibility of soil contaminants
- Establish research plantation on contaminated lands located at Fort Riley Army installation

NULES and NULP, Ukraine

- Exploring nematodes as indicators of process effectiveness for semi-field research in Kamenetz
- Biomass production: impact of soil properties
- Semi-field research on soil from Mariinka, Eastern Ukraine
- Establish research plantation at Kurachovo, Eastern Ukraine
- Working out curricula for the new graduate course in Ecology including phytotechnology

1/2 Курахово

IPBB, Kazakhstan

- Establish plantation of *M.xgiganteus* and exploring adaptation of *M.xgigateus* to Kazakhstan conditions
- Possibilities of growing *M.xgiganteus* at pesticide's contaminated soil

Advantages of the phytotechnology

- The union of phytoremediation and production of biofuel crops is perspective approach (delivering additional benefits – phytoproducts)
- That method permits to restore marginal contaminated land to agricultural use or urban land bank and simultaneously meet the demand for biomass production as alternative energy sources.
- The additional request is to stabilize the soil and to decrease maximally extraction of contaminants to the above surface part of the plants to be used for energy production

Biofuel crops for biotechnology

- Second generation biofuel crops represent not-food crops and are less directly in conflict with food crops
- Crops for second generation biofuels can be divided into two main categories:

Advantages and disadvantages of *Miscanthus* for phytotechnology with biomass production *

Advantages	Disadvantages					
In prod	luction					
Perennial, established stands last ~20 years	Takes 2-3 years to fully establish					
Effectively suppresses weeds once established	Tall, dense growing perennial grass monoculture with limited wildlife friendly uses					
High productivity of biomass compared to other energy crops (20 up to 35 tons.ha ⁻¹ .yr ⁻¹)	Bioenergy processing immature technology; expensive pre-processing needed					
Uses water efficiently by C-4 photosynthesis; total usage ~ 1 m.yr ⁻¹	Yields are influenced by water availability; under low-rainfall conditions may be poor					
Grows at lower temperatures than other warm season (C-4) grasses; hence longer season	Limited tolerance of low winter temperatures so not suited to severe continental climates					
Does not require as much N as sorghum, maize, oil palm, or sugar beets	Off-take of K ~3 x more than coppice willow					
Mineral content of biomass relatively low compared to common biomass crops	Mineral nutrient content per unit energy high compared to coal					
The winter harvested crop is relatively dry, so drying costs are low	Field drying and mineral leaching results in significant biomass loss as leaf fall					

* Pidlisnyuk et al, Critical Review in Plant Science, 2014, N1, p.1-19

Advantages and disadvantages of *Miscanthus* for phytotechnology with biomass production*

In phytoremediation									
Economic return can be obtained from contaminated land with employment and market value of biomass fuels (possibility of developing a more economical approach to remediation of soils with heavy metals such as mine land)	Dedicated energy crops can result in displacement of other crops with significant changes in land use, food crop prices								
Easier to clear than trees for the site to be transformed for future use	Sterile hybrid so propagation for initial establishment is labor intensive								
In both processes									
Potential for income generation through carbon credits through CO ₂ sequestration	Less C storage than forest wood crops over next 50 years								
Reduction of soil erosion due to rainfall, or wind. Reduces dust	Can serve as reservoir for insect pests of other species								

* Pidlisnyuk et al, Critical Review in Plant Science, 2014, 1, p.1-19

Military sites in Ukraine

- In 1991, military sites included territory of 4500 garrisons, testing areas and military individual sites occupying about 600,000 hectares.
- In the period between 1991 and 2003, approximately 140,000 hectares of territory, 147 military bases and 507 separate defense objects were withdrawn from Ministry of Defense jurisdiction
- Currently numerous new military contaminated sites appeared at the Eastern part of the country as result of anti-terroristic operation mainly polluted by metals, oils and products of their decompositions.

- The contaminated research site was located in city Kamenetz-Podilsky, Western Ukraine and had the following coordinates: Latitude-48.680910; Longitude-26.58025. The land was used as a military storage of former Soviet UnionArmy.
- The control soil was taken from nearby agricultural field and had the following coordinate: Latitude-48.715954; Longitude-26.577356

Agronomic characteristic of the soil from the research site , Kamenetz-Podilsky, Ukraine

Table 1. Agronomic data of the soil from the research site

Parameter	Value	Method
рН	6.90 ± 0.15	DSTU ISO 10390-2001
N-NO3 ⁻ [mg/kg]	11.6 ± 2.3	DSTU 4729-2007
N-NH4 ⁺ [mg/kg]	35.2 ± 1.8	DSTU 4729-2007
Humus [%]	2.84 ± 0.16	DSTU 4289-2004

Research conditions

✓ There were 7 kg of mixture soil in each pot, and two experiments were done in parallel.
✓ In each pot the contaminated soil was mixed with control soil using the next combinations: 4:0; 3:1;1:1;1:3; 0:4.

✓ In each pot two rhizomes of *M. x giganteus* were planted.

✓ Analysis of heavy metals in the soil, roots, stems and leaves were carried out by Roentgen-fluorescence analysis using analyzer Expert-3L (INAM, Ukraine, <u>http://inam.kiev.us/contact-ua</u>

✓ Statistical evaluation of data was carried out using Microsoft Excel and Statistica software pack at the significance level a=0.05. Extreme values were excluded using the inner-fence test (Altman, 1990).

Concentration of the selected metals in the soil samples in pots

			c [mg/kg dwt]		
	1	2	3	4	5
As	75±5	165±85	115±35	70±0	75±5
Cu	180 ± 10	120±20	125±25	155±5	255±45
Fe	140 955	135 140	139 010	131 530	136 115
	±5 715	± 14580	$\pm 13 870$	± 8570	±1 515
Mn	5 020±1 580	5 210±40	5 835±115	4 305±375	7 205±1 245
Pb	395±85	185 ± 85	150±50	230±10	450±50
Sr	795±25	935±65	700±10	655±115	1 055±135
Ti	19 815±1 475	17 640±1 370	19 160±1 960	20 265±1 115	19 755±775
Zn	560±30	540±0	515±15	505±15	585±15
Zr	1 910±140	1 515±235	1 165±65	1 070±230	1 115±145

Table 2. Concentrations of selected metals in soil samplings (1-5) taken from the research site (in mg/kg dwt- dry weight).

 \checkmark Soil due to former intensive military activities was contaminated by metals, in particular by Fe, Mn,Sr,Ti and Zr.

✓ Concentrations of As, Cu, Pb,Zn were elevated compare to inherent soil in the area

Correlation between metal concentration in different plant parts and two sampling period .*

a) As									c) Fe							
10	1.	2.	3.	4.	5.	6.	7.		<u>条</u>	1.	2.	3.	4.	5.	6.	7.
1. Soil	1,00								1. Soil	1,00						
2. Roots – year 1	-0,45	1,00							2. Roots - year 1	0,34	1,00					
3. Stems – year 1	-0,18	0,10	1,00						3. Stems – year 1	-0,44	-0,17	1,00				
4. Leaves - year 1	-0,18	-0,04	-0,11	1,00					4. Leaves – year 1	-0,32	-0,66	-0,14	1,00			
5. Roots - year 2	-0,20	0,00	-0,17	0,68	1.00				5. Roots – year 2	-0,68	-0,27	0,47	0,18	1,00		
6. Stems - year 2	-0,22	-0,02	0,52	-0,16	0,06	1,00			6. Stems – year 2	-0,38	-0,33	0,67	-0,09	0,02	1,00	
7. Leaves - year 2	-0,27	0,18	0,59	-0,17	-0,07	0,22	1,00		7. Leaves – year 2	0,01	0,19	0,31	-0,48	-0,26	0,62	1,00
) Cu	1.	2.	3.	4		5			d) Mn							
Soil		4.	2.				~	7		1	2	3	4	5	6	7
	1.00					5.	6.	7.	1, Soil	<i>1</i> .	2.	3.	4.	5.	<u>6</u> .	7.
	1,00 -0,31		8			J.	0.	7.	1. Soil 2. Roots – year 1		2.	3.	4.	5.	б.	7.
2. Roots – year 1	- <mark>0,3</mark> 1	1.00		00		<u>.</u>	0.	7.		1,00		3 . 1,00	4.	5.	б.	7.
2. Roots – year 1 3. Stems – year 1	-0,31 -0,13	1,00 -0,18	3 1.0	00	.00	5.	0.	7	2. Roots – year 1	1,00 -0,37	1,00		4.		б.	7.
2. Roots – year 1 9. Stems – year 1 4. Leaves – year 1	- <mark>0,3</mark> 1	1,00 -0,18 0,05	3 1.0 5 -0,2	00 29 1	101010	1,00	0.	7	2. Roots – year 1 3. Stems – year 1	1,00 -0,37 -0,15	1,00 -0,46	1,00	1,00			7.
2. Roots – year 1 3. Stems – year 1 4. Leaves – year 1 5. Roots – year 2 5. Stems – year 2	-0,31 -0,13 0,16	1,00 -0,18 0,05 0,50	3 1.0 5 -0,2 5 0,2	00 29 1 25 0	,00		0 .	7	2. Roots – year 1 3. Stems – year 1 4. Leaves – year 1	1,00 -0,37 -0,15 0,54	1,00 -0,46 -0,57	1,00 0,42	1,00	1,00		

*Significant correlation (P<0.05) are in bold red

Correlation between metal concentration in different plant parts and two sampling period .*

								g) Ti							
e) Pb	ÿ.					6	7	5.	1.	2.	3.	4.	5.	6.	7.
	<i>I.</i>	2.	3.	4.	5.	6.	7.	1. Soil	1,00						
1. Soil	1,00	1.00						2. Roots - year 1	-0,19	1,00					
2. Roots – year 1	-0,30	1,00	1.00					3. Stems – year 1	0,38	0.10	1.00				
 Stems – year 1 Leaves – year 1 	-0,04 0,58	-0,34 -0,30	-0,07	1.00				4. Leaves - year 1	0,19	-0,59	-0,20	1,00			
5. Roots – year 2	0,33	-0,32	-0,06	0.03	1.00			5. Roots - year 2	-0,17	-0,24	0,30	0,23	1,00		
6. Stems – year 2	0,21	-0,35	-0,24	-0,22	0,39	1,00		6. Stems – year 2	0,41	-0,67	0,49	0.18	0,08	1.00	
7. Leaves – year 2		1.2501		(ملبع)		التقيرا	1,00	7. Leaves – year 2	-0,19	0,10	0,19	-0,56	-0,58	0,28	1,00
f) Sr								h) Zn	0.000000	- 6* 0.07	2242402224	0.0000000	10000033	10/08/27100	2752200
/	1.	2.	3.	4.	5.	б.	7.		1.	2.	3.	4.	5.	<i>6</i> .	7.
1. Soil	1,00							1. Soil	1,00						
2. Roots - year 1	-0,36	1,00						2. Roots - year 1	-0,12	1,00					
3. Stems - year 1	0,08	-0,40	1,00					3. Stems - year 1	-0,06	-0,21	1,00				
4. Leaves – year 1	0,44	-0,66	0,26	1,00				4. Leaves - year 1	-0,25	-0,56	0,33	1.00			
5. Roots - year 2	- <mark>0</mark> ,15	-0,33	0,26	0,38	1,00			5. Roots - year 2	0,52	-0,40	0,17	0.03	1.00		
6. Stems – year 2	0,14	-0,51	0,27	0,28	0,49	1,00		6. Stems – year 2		-0,59		0,37		1,00	
7. Leaves - year 2	0,49	-0,17	0,10	0,54	0,03	0,46	1.00	NCF365267371524 - 150752420803	0,58		0,55		0,61		1.00
							â	7. Leaves – year 2	0,83	0,05	-0,02	-0,36	0,21	0,53	1,00

*Significant correlation (P<0.05) are in bold red

 \checkmark The variability of metal concentration in the soils was not high, max relative deviation was ±33% around average

✓The correlation between metal concentrations in soil and aboveground parts were insignificant (As,Fe,Mn,SR,Ti, Zr) or occasional (Cu,Pb,Zn)

✓That permitted to consider all variants 1-5 equal and to compare them together in order to increase significance of statistical comparisons

Table 3. Accumulation of metals in the different parts of *M*. *x* giganteus at the end of first and second vegetation seasons (average \pm std. deviation, n = 10). Letters indicate overlapping of confidence intervals based on mutual comparisons ($\alpha = 0.05$), i.e. values with the same letters can be considered comparable; bolded values indicate values significantly higher than zero (t-test, $\alpha = 0.05$).

c (m	g/kg dwt)	Year 1			Year 2		
	soil	roots	stems	leaves	roots	stems	leaves
As	83±24c	7±7b	0±0a	0±0a	8±4b	0±0a	0±0a
Cu	152±35e	55±32d	4±1a	10±11ab	57±13d	8±3b	14±4c
Fe	136 550±10 641f	27 162±18 187e	316±146b	5 227±3 529d	20 238±3 034e	130±62a	1 107±251c
Mn	5 189±963e	953±552cd	128±32b	445±260cd	638±265d	46±23a	176±65bc
Pb	282±134c	60±60b	1±1a	1±2a	21±13b	0±0a	0±0a
Sr	788±128e	158±93d	7±3a	39±17c	95±4d	16±7b	29±12bc
Ti	19 327±1 668f	4 067±2 629e	67±24b	913±641d	2 800±360e	28±17a	158±34c
Zn	541±34e	138±75cd	18±8a	114±54cd	163±47d	49±15b	75±9c
Zr	1 355±364e	269±194d	1±1ab	19±13c	112±53d	0±0a	2±1b

 \checkmark Accumulation of metals took place predominantly in the roots, translocation to above surface parts was order of magnitude lower.

 \checkmark Fe,Mn,Ti were accumulated more intensive in the first year and less tangible in the second

✓Cu,Pb,Zn were insignificant accumulative in both seasons

 \checkmark As and Pb were accumulated a little

Table 4. Translocation ratios¹ of metals in *M. x giganteus* parts measured after first and second vegetation seasons (average \pm std. deviation, n = 10). Letters indicate overlapping of intervals ($\alpha = 0.05$, see Table 3); bolded values indicate significantly non-zero values (t-test, $\alpha = 0.05$).

	Year 1			Year 2		
	stems/roots	leaves/roots	leaves/stems	stems/roots	leaves/roots	leaves/stems
As	0±0a	0.08±0.18a	0±0a	0.01±0.03a	0.07±0.14a	2.53±2.53a
Cu	0.11±0.09b	0.05±0.07a	2.70±3.12bcd	0.12±0.03b	0.24±0.06c	1.76±0.34d
Fe	$0.02{\pm}0.02$	0.29±0.31ab	15.06±11.03c	0.01±0a	$0.05 \pm 0.02 b$	7.94±2.73c
Mn	0.26±0.22ab	0.88±0.95ab	3.10±1.78bc	0.07±0.04a	0.29±0.16b	4.26±1.57c
Pb	0.03±0.04a	0.01±0.01a	6.75±9.18a	0±0a	0±0a	0±0a
Sr	0.10±0.10a	0.39±0.38a	5.97±3.25d	0.18±0.06ab	0.35±0.16b	1.93±0.75c
Ti	0.03±0.02bc	0.37±0.46abc	16.12±14.63d	0.01±0.01b	0.05±0.01c	5.66±1.73d
Zn	0.23±0.19a	1.04±0.86ab	5.55±2.47c	0.31±0.07a	0.42±0.07a	1.64±0.39b
Zr	0±0a	0.13±0.16ab	22.15±24.16ab	0±0a	0.02±0.02a	2.67±1.38ab

¹Generally the leaves/roots ratio divided by stems/roots ratio should be equal to leaves/stems ratio, which was predominantly observed. Nevertheless, due to high data variability and elimination of extremes concentration values by inner-fence test, sometimes the values differ. The leaves/stems ratio was calculated directly from the concentration values and not from two other ratios.

Shoot/roots coefficients were significantly lower than 1 (with exception of Zn in 1 year) That indicates absence of hyper accumulation of metals by *M.giganteus* growing at the soil from the military contaminated site in Kamenetz-Podislky

Summary

✓ Despite high metals' concentrations in the research soil no evident growth inhibition was observed and concentrations of metals in the over surface parts were minor. The translocation ratio was calculated for roots, stems and leaves; coefficient was significantly lower than 1 and indicated absence of hyper accumulation

\checkmark The metal accumulation data confirmed the desired pattern requested for the phytotechnology with biomass production.

 \checkmark The research shows that utilization of the biomass obtained is attractive and can turn the process into a profit making operation.

 \checkmark The further research has also to be concentrated on interconnection between *M. x* giganteus biomass quality and quantity grown at the military sites including those newly appeared at the East of Ukraine (Mariinka and Kurakhovo)

Acknowledgements

Research was supported by Kansas State University, USA and NATO SPS MYR G4687 "Cleaning Military Site"

MINIMUM MINIMUM

