~ Contaminated Sites 2016~

MANAGEMENT OF CRUDE OIL AND HEAVY METAL CONTAMINATED LAND IN RUSSIA USING A RISK ASSESSMENT APPROACH

Maria S. Kuyukina^{1,2}, Irena B. Ivshina^{1,2}, Andrey A. Elkin^{1,2}, Tatyana A. Peshkur³, Colin J. Cunningham³

¹ Perm State National Research University, 15 Bukirev Street, Perm 614990, Russia. E-mail: <u>kuyukina@iegm.ru</u>

² Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, 13 Golev Str., 614081, Perm, Russia.

³ Scottish Environmental Technology Network (SETN), University of Strathclyde, Glasgow, UK. E-mail: <u>colin.cunningham@strath.ac.uk</u>

Introduction

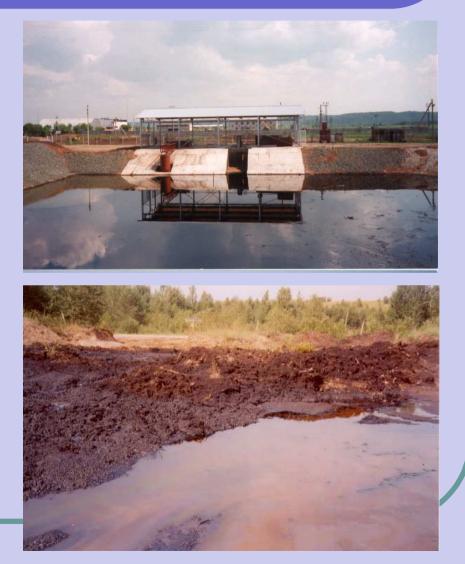
• Crude oil extraction and transport are often accompanied by soil contamination

- Land contamination negatively impacts economical and social developments, threats human health and natural biodiversity
- Bioremediation has a great potential to restore polluted environments by using biodegradative activities of microorganisms
- A risk based approach to the management and bioremediation of a crude oil contaminated site is proposed

• There are 222 oilfields in Perm region, and unexplored oil resources estimate about 600 million tones.

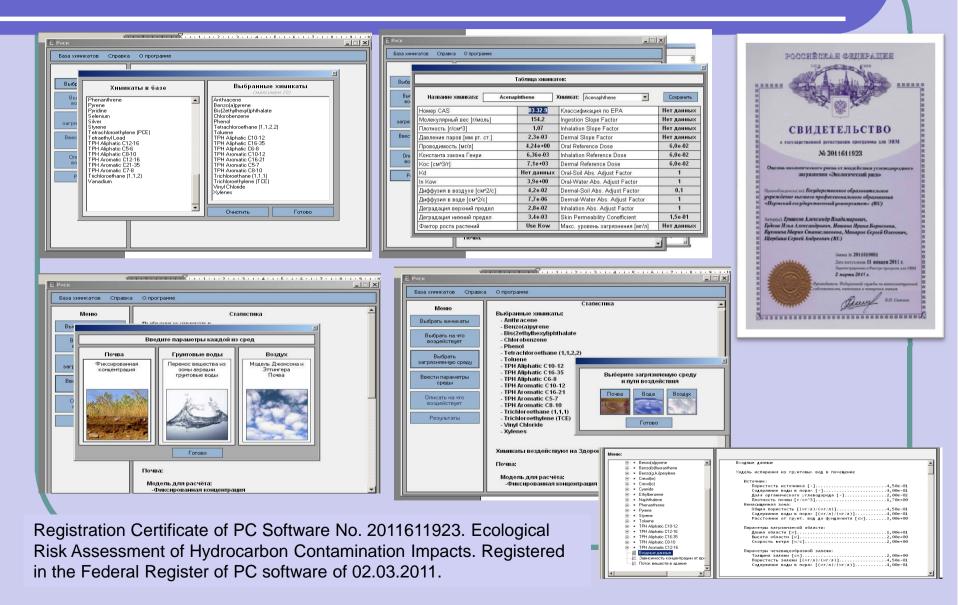
Usinsk catastrophe, 1994

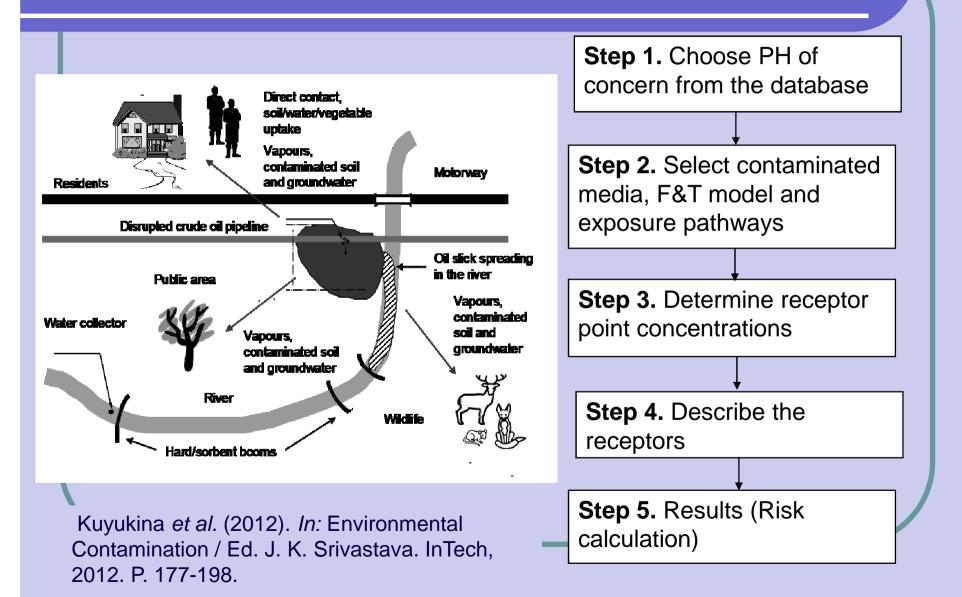
The worst accidental spill on land


130 000 tones of crude oil released from a ruptured pipeline

Waste oil pits

- A leftover from oil exploration and production on land
- Over the years light fractions evaporate, and the pits contain viscous and debris laden asphalt-like oil
- Oil wastes are harmful due


 (i) volatile hydrocarbon
 emission; (ii) penetration into
 soil and groundwater
- There are 60 crude oil waste storage pits in Perm region


Contaminated site management scheme

• Topography Soil agrochemistry Hydro(geo)logy • Oil composition & concentrations Site evaluation & Climate • Heavy metals analyses Humans & biota • Oil-degrading bacteria Hazard indices - Carcinogenic risk - Ground/surface **Risk assessment** water contamination risk - Cleanup levels Biodegradation limitations (lack of electron acceptor & **Feasibility study** nutrients, low temperature, recalcitrant substances) • Bioremediation time (bioaugmentation & biosurfactants) **On-site** Soil-slurry **bioreactor** / **Biopile** system bioremediation Soil phytotoxicity testing • Periodic soil sampling from biopiles Site monitoring & • Ground / surface water & air monitoring closure

Risk assessment (ecological and human health) from oil contamination

Risk assessment model for crude oil spillage from a disrupted pipeline

Risk assessment data

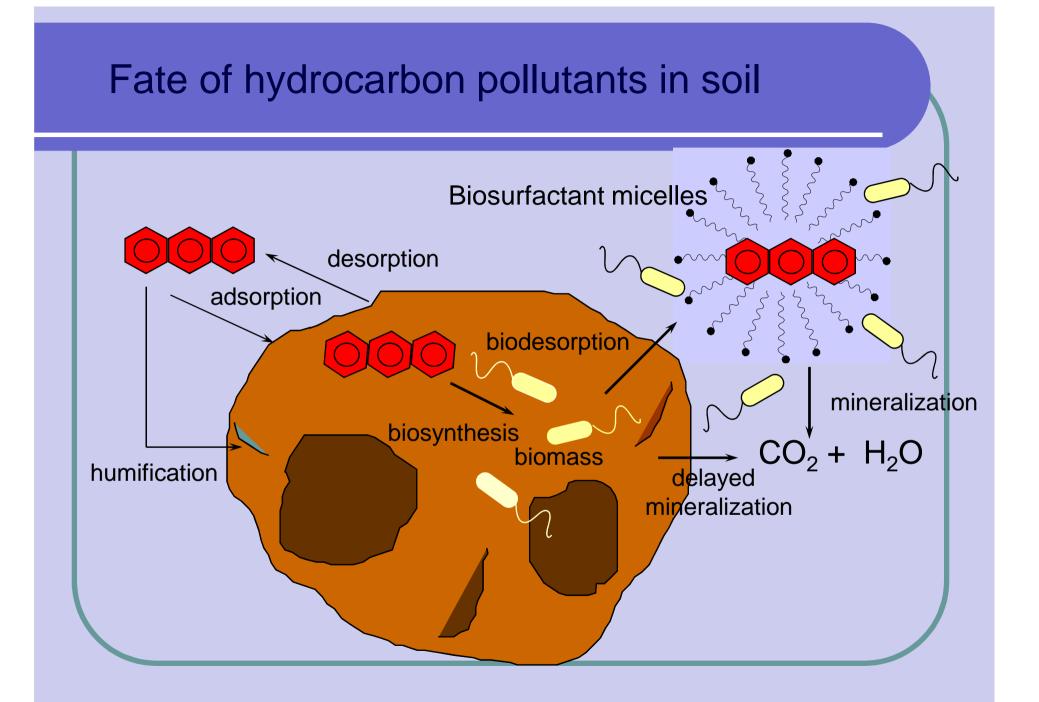
PHs	Concentration in soil (mg/kg)
Acenaphthene	2.1
Acenaphthylene	0.3
Antracene	2.1
Benz(a)anthracene	8.7
Benzo(a)pyrene	14.1
Benzo(b)fluoranthene	15.6
Benzo(g,h,i)perylene	14.4
Benzo(k)fluoranthene	17.1
Chrysene	10.5
Dibenz(a,h)anthracene	2.4
Fluoranthene	17.4
Fluorene	0.6
Naphthalene	12.3
Pyrene	18.3
TPH Aliphatic C10-12	1890
TPH Aliphatic C16-35	126900
Total	1.3 x 10⁵

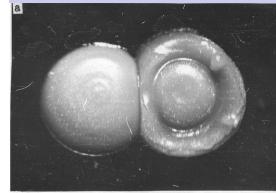
-

PHs	Carcinogenic risk	Hazard index
Acenaphthene	0	1.2e-04
Acenaphthylene	0	0
Antracene	0	2.5E-05
Benz(a)anthracene	8e-06	0
Benzo(a)pyrene	1.3e-04	0
Benzo(b)fluoranthene	1.4e-05	0
Benzo(g,h,i)perylene	0	0
Benzo(k)fluoranthene	1.6e-06	0
Chrysene	9.7e-08	0
Dibenz(a,h)anthracene	2.2e-05	0
Fluoranthene	0	1.5e-03
Fluorene	0	5.3e-05
Naphthalene	0	2.2e-03
Pyrene	0	2.2e-03
TPH Aliphatic C10-12	0	1.7e-01
TPH Aliphatic C16-35	0	2.2e-01
Total	1.8 x 10-4	4.0 x 10-1

Summary of clean-up levels

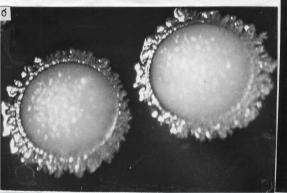
Clean-up Levels in Surface Soil	CLSSs [mg/kg]
Acenaphthene	1.5E+03
Acenaphthylene	1.0E+03
Anthracene	7.6E+02
Benz(a)anthracene	8.1E+02
Benzo(a)pyrene	8.1E+00
Benzo(b)fluoranthene	8.1E+01
Benzo(g,h,i)perylene	1.0E+04
Benzo(k)fluoranthene	8.1E+01
Chrysene	8.1E+02
Dibenz(a,h)anthracene	8.1E+00
Fluoranthene	1.0E+03
Fluorene	1.0E+03
Indeno(1,2,3CD)pyrene	7.1E+00
Methyl napthalene (2)	1.0E+03
Naphthalene	5.1E+02
Phenanthrene	1.0E+04
Pyrene	7.6E+02
TPH Aliphatic C10-12	2.5E+04
TPH Aliphatic C16-35	1.0E+04
TPH (total)	1.3E+04


"Is the contamination appropriate for bioremediation?"

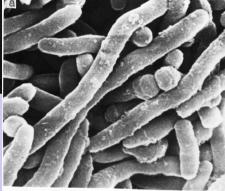

Feasibility study

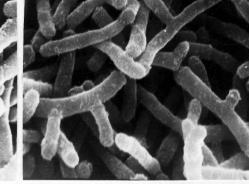

Slurry bioreactor operating during cold seasons.

 Bioaugmentation with immobilized cultures of hydrocarbon-oxidizing bacteria.

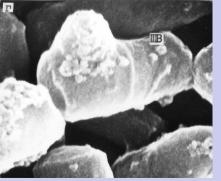

Biosurfactant addition.

The IEGM Collection of Alkanotrophic Microorganisms

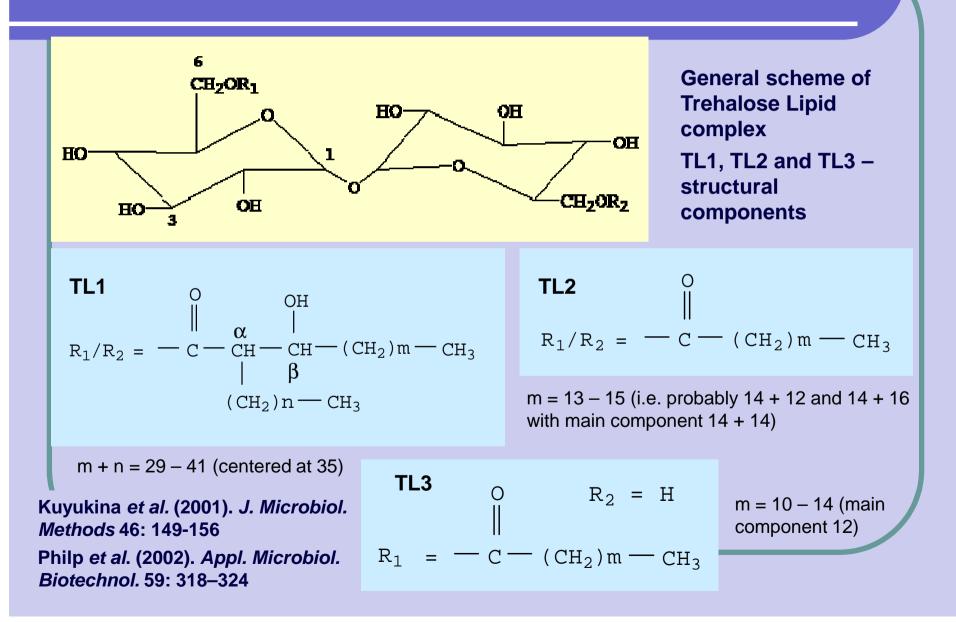

• 86 species of 19 bacterial genera


• Actinobacteria of the genus *Rhodococcus* comprise the major portion of the Collection

• Strains – **biodestructors** of organic pollutants, **producers** of amino acids, vitamins and **biogenic surfactants**


The **2000** non-pathogenic and aerobic bacterial cultures isolated from **contrasting** climatic regions.

www.iegm.ru/iegmcol/index.html



WDCM # 768 http://www.wfcc.info/datacenter.html

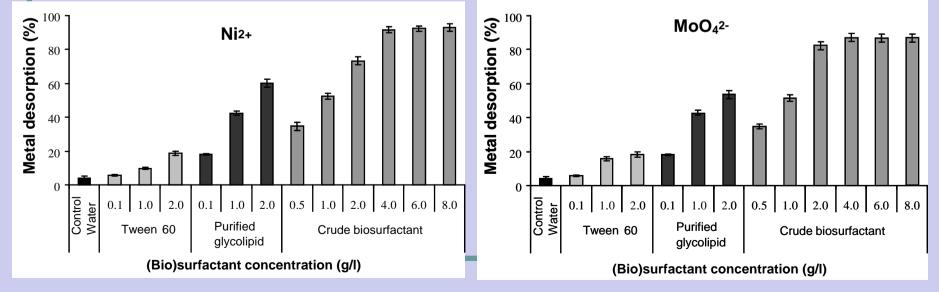
Structure of *Rhodococcus* biosurfactant

Oil removal from soil using *Rhodococcus* biosurfactants

Rhodococcus	Oi		ved, %	Ν7	fraction removed from oil
species	I	II		IV	sludge Cont 4
R. erythropolis	96	77	70	63	330
R. opacus	87	77	22	10	
R. ruber	98	98	87	50	
Control (water)	31	20	5	2	Oil → sludge
				<u> </u>	

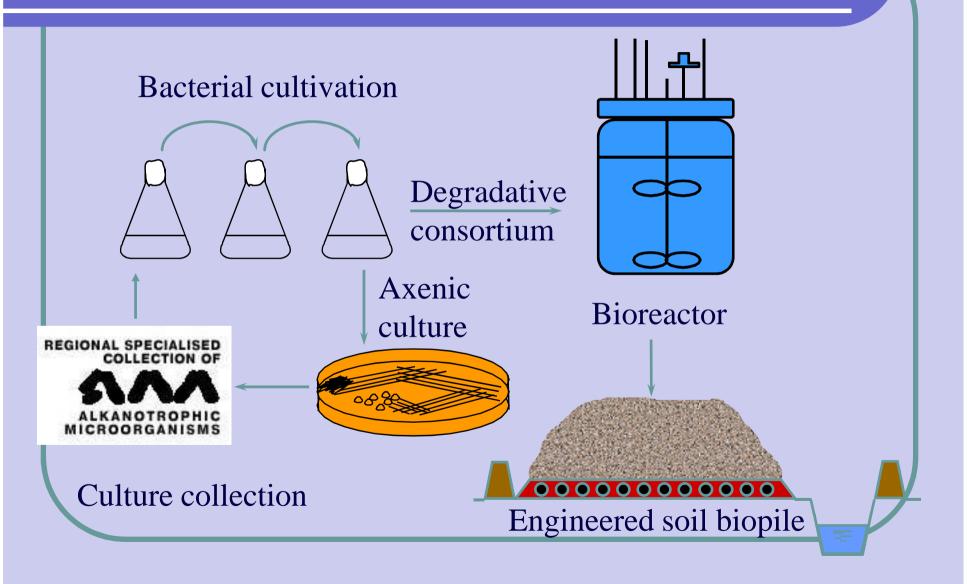
Hydrophobic

B


Oils have increasing asphaltenes and high molecular weight paraffins

A

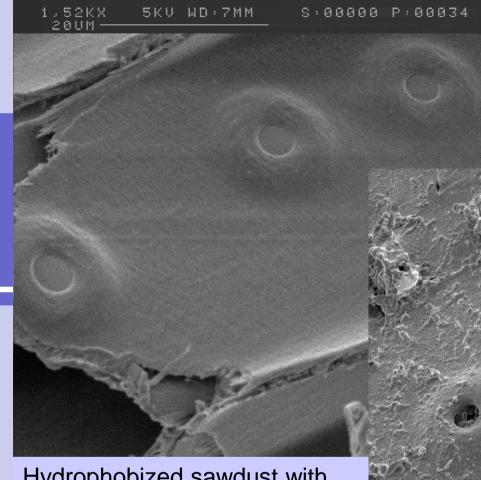
Ivshina et al. (1998). World J. Microbiol. Biotechnol. 14: 711-717 Kuyukina et al. (2005). Environ. Int. 31: 155-161


Heavy metal removal (%) from soil

	Heavy metals	Rhodococcus	biosurfactant	Turson CO	Control (water)
		Crude	Purified	Tween 60	
	Cd ²⁺	82.3	48.1	16.5	2.3
	CrO ₄ ²⁻	87.1	58.0	19.3	3.9
	MoO ₄ ²⁻	88.3	54.6	19.7	6.3
	Ni ²⁺	92.5	66.7	21.1	4.8
	Pb ²⁺	68.7	42.3	15.1	1.8

Kuyukina et al. (2010). Russian J. Biomechanics. 14, 4 (50), 34-40; Ivshina et al., (2013). Ecology. 44, 123-130.

Bioaugmentation

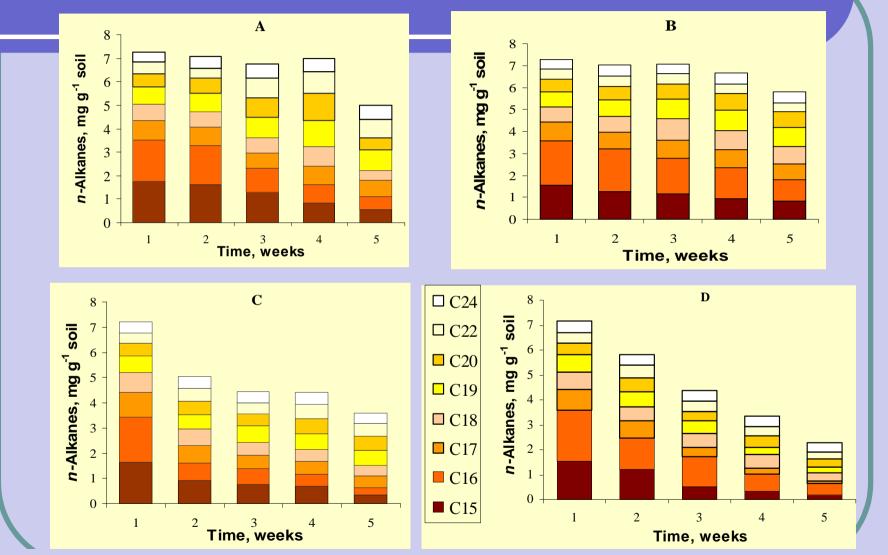

Oil absorbing capacity of agriculture wastes

Type of waste	Oil sorption capacity (%, wt.)	Availability in Urals Region
Cotton waste	600 - 3000	No
Hemp fibre	1000 - 1300	No
Corncobs	500 - 700	No
Sunflower husks	600 - 800	Yes
Sawdust	450 - 850	Yes
Poultry feathers	500 - 900	Yes

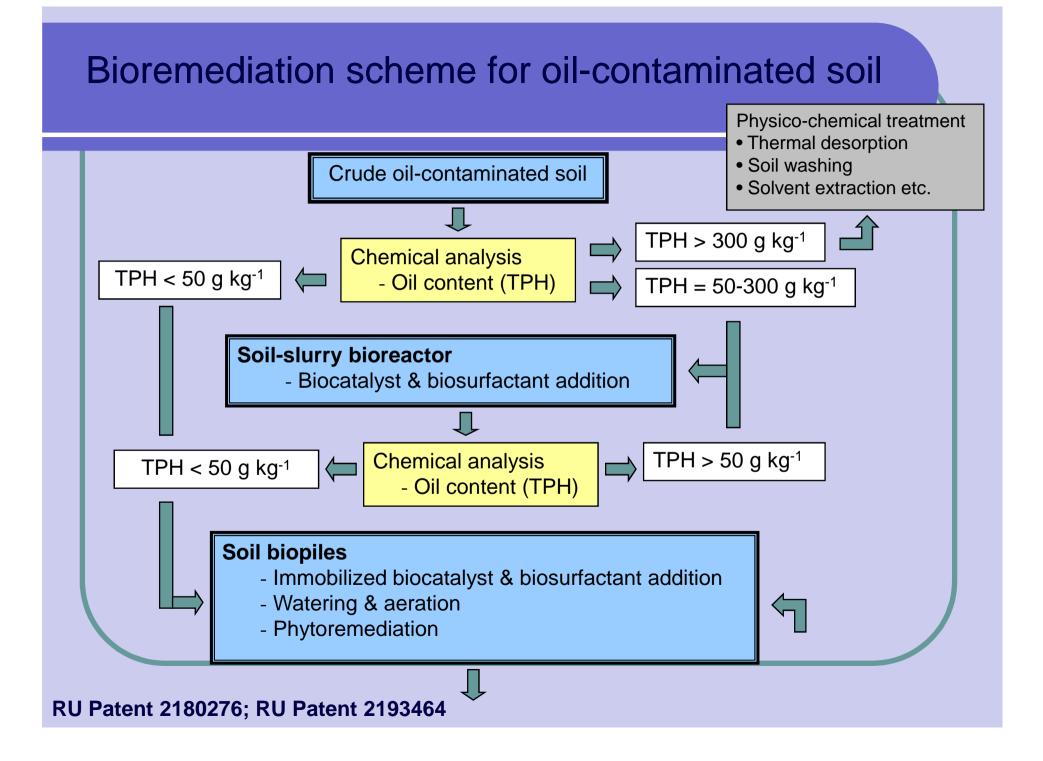
Immobilisation of Rhodococcus cells on different matrices

Immobilisation matrix		Water-	Bacterial	Hexadecane
Base material	Treated with hydrophobizing agent	absorbing capacity, g H ₂ O/g	adsorption, mg of dried cells/g	degradation rate, mg/g∙h
Sunflower	None	2.03 ± 0.18	9.0 ± 3.0	53.0 ± 4.0
husks	Linseed oil varnish ("Olifa") (1:2, v/v)	1.52 ± 0.08	2.0 ± 0.5	42.0 ± 6.0
Sawdust	None	2.55 ± 0.15	39.0 ± 5.0	71.0 ± 7.0
	"Olifa" (1:2, v/v)	0.39 ± 0.02	15.5 ± 1.5	46.0 ± 6.0
	"Olifa" (1:0.1, v/v)	$\textbf{1.24} \pm \textbf{0.09}$	46.5 ± 1.0	107.0 ± 9.0
	Si-organic emulsion	1.93 ± 0.10	46.0 ± 3.0	65.0 ± 2.5
	Biosurfactant	1.54 ± 0.05	40.0 ± 4.5	72.0 ± 4.5
	<i>n</i> -Hexadecane vapour	1.68 ± 0.12	41.0 ± 4.0	42.5 ± 5.0
Poultry	None	1.65 ± 0.10	6,0±1,0	43.0 ± 7.0
feathers	"Olifa" (1:0.1, v/v)	1.48 ± 0.12	56.0 ± 6.5	61.0 ± 4.0
	Si-organic emulsion	1.60 ± 0.04	69.0 ± 5.6	83.0 ± 8.0

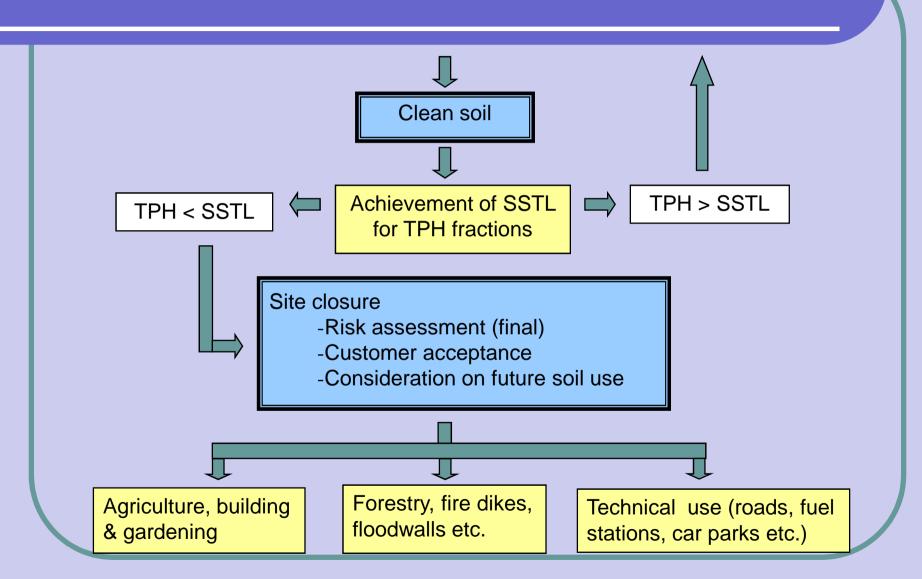
RU Patent 2298033; Podorozhko et al. (2008) *Biores. Technol.* 99:2001-2008; Kuyukina et al. (2009) *Int. Biodeter. Biodegrad.* 63:427–432


Electron micrograph of unmodified sawdust x 1000

S4700 5.0kV 12.0mm ×1.00k SE(U) 19/06/03 09:56


Hydrophobized sawdust with immobilised *Rhodococcus* cells x 1000

RU Patent 2298033


Dynamics of oil biodegradation in laboratory piles

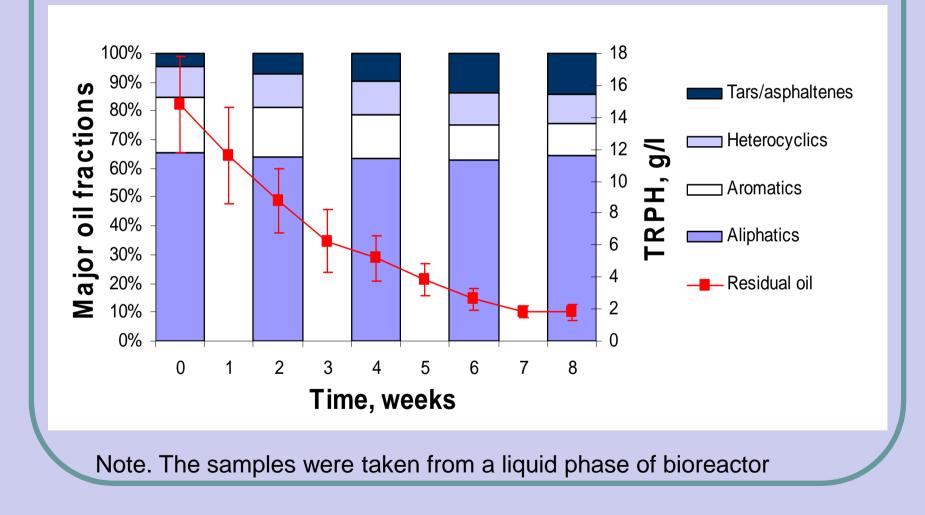
Soil systems: A – control (no additions); B – non-inoculated sawdust; C – immobilized *Rhodococcus* cells; D –immobilized *Rhodococcus* + biosurfactant

Bioremediation scheme for oil-contaminated soil

RU Patent 2180276; RU Patent 2193464

Why slurry bioreactor ?

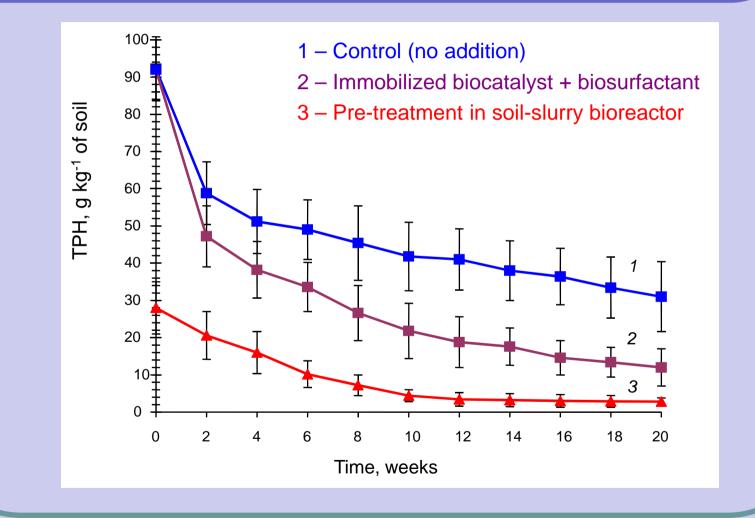
- Facilitates growth of hydrocarbon-oxidizing bacteria
- High contact area between oil degraders and pollutant
- Control of operating parameters (T^o, pH, O₂, biomass)
- Operation under cold conditions
- Reduction of treatment time and biocatalyst application rate

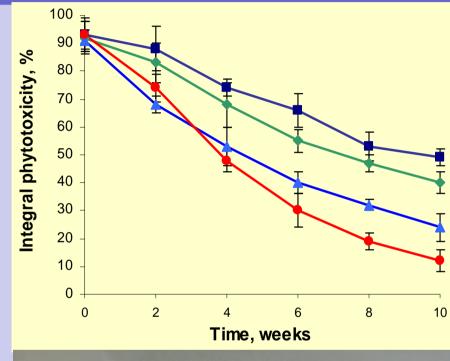

Slurry bioreactor

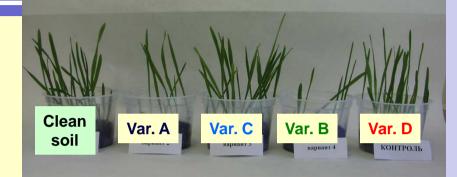
- Work volume 30 m³.
- Work regime periodic.
- Solid phase 30-40 %.
- Air supply 50 liter/min.
- Mixing rate 50 rpm.
- Biocatalyst (2 kg/m³) weekly.


Kuyukina et al (2003) Soil Sediment Contamin. 12:85–99; Kuyukina et al. (2009) Int. Biodeter. Biodegrad. 63:427–432

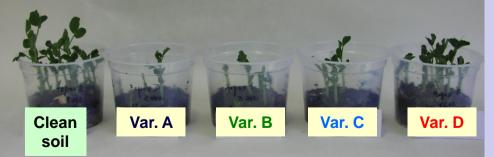
Oil degradation dynamics in slurry bioreactor

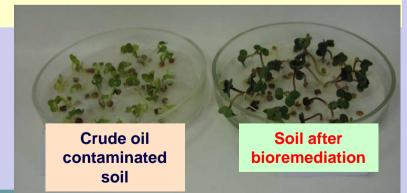

Field biopile system





Oil contamination decrease in field biopiles


Phytotoxicity results



Soil phytotoxicity testing using oats

- Var. A --- Control (no addition) Var. B --- Non-inoculated sawdust Var. C --- Sawdust immobilized Rhodococcus
- Var. D --- Immobilized Rhodococcus + biosurfactant

Soil phytotoxicity testing using peas

Water-soluble fraction phytotoxicity testing using radish seed germination

Ecotechnology developments are protected by RU patents

• **RU Patent 2180276.** An oleophilic preparation for oil-contaminated soil treatment. 10.03.2002.

• **RU Patent 2193464.** Bioremediation method for soils contaminated with oil or oil products. 27.11.2002.

• **RU Patent 2216525.** Microbiological treatment of industrial wastes contaminated with heavy metals, including zinc, cadmium and lead. 20.11.2004.

• **RU Patent 2298033.** Composition for production of carrier for immobilized hydrocarbon-cleaving microorganisms, and method for carrier production. 27.04.2007.

• **RU Patent 2475542.** A method and facility for determining the efficacy of adsorptive immobilization of microorganisms and monitoring of the functional activities of immobilized microbial cell-based biocatalysts. 20.02.2013.

• **Software registration certificate 2011611923.** Assessment of ecological risk from hydrocarbon contamination. 02.03.2011.

• **Software registration certificate 2011617650.** Calculation of soil-washing processes for oil- and heavy metal-contaminated soil using a Rhodococcus biosurfactant. 30.09.2011.

• **Software registration certificate 2012616511.** Module system for calculation of hydrocarbon contamination impact on human health. 24.09.2012.

Priroda-Perm, Plc. is a strategic partner of Perm University

Activity fields

1. Processing and utilization of solid/liquid oily wastes.

2. Treatment and utilization of drilling mud cuttings.

3. Utilization of paraffin sediments, contaminated materials, wastewaters.

- 4. Emergency response to oil spills.
- 5. Oil storage tank cleanout.
- 6. Oil contaminated soil remediation.
- 7. Expert examination of production safety.

Contaminated soil + immobilized biocatalyst

46 Gazety Zvezda Str., 614007 Perm, Russia Fax: (342) 244-00-36 (342) 214-41-54 e-mail: referent@priroda-perm.ru www.priroda-perm.ru

Processing and treatment of oil-contaminated soil (OCS) using a bioremediation technique

Unloading of OCS from oil waste storage pit using special-purpose machinery

Zone of liquid waste accumulation

Development of a technological site

Unloading of OCS to the technological site

Cleanup of the oil waste storage pit

Conclusion

- Risk based approach to the management and bioremediation of a crude oil contaminated site is applied.
- Bioremediation techniques such as soil-slurry bioreactors, augmentation with immobilized cultures of hydrocarbon-oxidizing bacteria and biosurfactant addition were proven to be efficient in the clean-up of oilcontaminated soil in cold climate conditions.
- In a pilot scale field trial, heavily contaminated soil was cleaned-up to within risk assessment standards.
- Eco-biotechnology developed is commercialized with the Priroda-Perm company.

Acknowledgements

The research was funded by the Russian Science Foundation grant 14-14-00643.

PGNIU/IEGM group

Dr. Maria S. Kuyukina, Leading Scientist

> Prof. Irena B. Ivshina, Head of Laboratory

Laboratory of Alkanotrophic Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm, Russia

CLARRC group

Dr. Colin J. Cunningham, SETN Director Dr. Peter Anderson, Senior Analyst

Dr. Tatyana A. Peshkur, Research Fellow

SETN, Strathclyde University, UK

Thank you for your attention !

Questions ??