

SLOVAK ENVIRONMENT AGENCY

is implementing an activity

INTERNATIONAL CONFERENCE CONTAMINATED SITES ZNEČISTENÉ ÚZEMIA MEDZINÁRODNÁ KONFERENCIA

INTERNATIONAL CONFERENCE

CONTAMINATED SITES 2022

SENEC, SLOVAK REPUBLIC, 12 – 14 OCTOBER 2022

The activity has been implemented within the framework of national project **Information and providing advice on improving the quality of environment in Slovakia**. The project is cofinanced by Cohesion Fund of the EU under Operational programme Quality of Environment.

www.op.kzp.sk

www.minzp.sk

www.sazp.sk

Remediation of a former mine technosol highly contaminated with As and Pb using (in)organic amendments combined with *Salix* species: a 5-year field study

Manhattan Lebrun

Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic lebrun@fzp.czu.cz

The activity has been implemented within the framework of national project **Information and providing advice on improving the quality of environment in Slovakia**. The project is cofinanced by Cohesion Fund of the EU under Operational programme Quality of Environment.

Remediation of a former mine technosol highly contaminated with As and Pb using (in)organic amendments combined with Salix species: a 5-year field study

Romain Nandillon^a, Manhattan Lebrun^{ab}, Yassine Chafik^a, Florie Miard^a, Sylvain Bourgerie^a, Domenico Morabito^a

^a INRAE USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France

^b Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic

The contaminated site of Pontgibaud

- ✓ Pontgibaud district (Auvergne-Rhône Alpes, France)
- ✓ Former Pb-Ag extraction mine
- ✓ Exploitation until end of XIXth century
- ✓ Study site: deposit for crushing of ore (GPS: 45°47'27"N; 2°49'38"E)

The contaminated site of Pontgibaud

Physico-chemical properties of Pont	gibaud technosol
$(\mathbf{n} = 3 \pm \mathbf{SE})$	

	Value	Unit
pH	4.60 ± 0.02	
Organic matter	2.60 ± 0.7	%
Organic Phosphorus	465 ± 17	mg.kg ⁻¹
Available Phosphorus	6 ± 1	mg.kg ⁻¹
Total Nitrogen	75 ± 3	mg.kg ⁻¹
Total Carbonates	0.7 ± 0.4	% CaCO ₃
Cation Exchange Capacity	2.3 ± 0.1	cmol.kg ⁻¹

 \rightarrow Acidic

 \rightarrow Low fertility

	Value	Limits*	
[Al]	2010 ± 187	NA	
[As]	1501 ± 326	20	
[Cd]	0.26 ± 0.00	3	
[Cr]	5 ± 0	150	
[Cu]	52 ± 5	140	
[Fe]	6518 ± 1639	50000	
[Mn]	7 ± 0	80	
[Ni]	<dl< td=""><td>50</td><td></td></dl<>	50	
[P b]	19228 ± 1531	300	
[Zn]	284 ± 20	300	

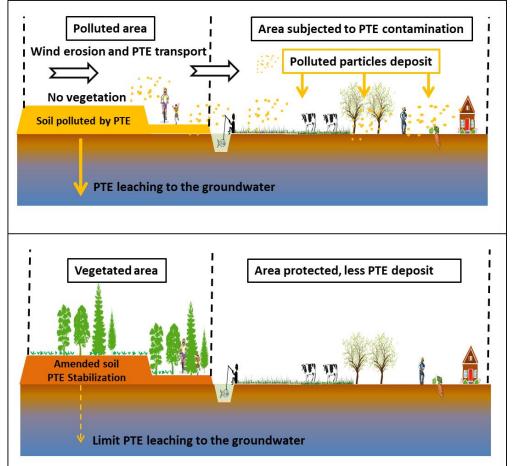
Metal(loid) content (mg.kg⁻¹) of Pontgibaud technosol (n = 3 \pm SE)

*Maximum permissible limit in soil (from Ashraf et al. 2019)

< DL = below detection limit (10 mg.kg⁻¹ Ni)

European Union Cohesion Fund

Data from Lebrun et al. 2020 (LDD)



The contaminated site of Pontgibaud

Need to reduce erosion and leaching risks = Protect the surrounding area

- \rightarrow Implementation of a vegetation cover
- \rightarrow Requires amendments

Lebrun et al. 2022, Assisted phytoremediation (pp. 101-130)

The use of amendments to ameliorate the soil

Biochar

- ✤ Source of stable carbon
- Shelter for microorganisms
- Cation immobilization

Biochar used:

- ✓ Hardwood biomass
- ✓ 500 °C

<u>Compost</u>

- Source of nutrients
- ✤ Source of microorganisms
- ✤ Cation immobilization

Iron sulfate

- ✤ Source of iron
- ✤ Arsenic immobilization

Compost used:

- ✓ Commercial product
- ✓ Peat moss, softwood bark, green compost, seaweed

Iron sulfate used:

✓ Commercial product

The use of amendments to ameliorate the soil

<u>Biochar</u>		Compost	<u>Iron sulfate</u>
рН	8.46 ± 0.01	$\textbf{7.40} \pm \textbf{0.02}$	$\textbf{2.58} \pm \textbf{0.00}$
Electrical Conductivity (µS.cm ⁻¹)	$\textbf{302}\pm\textbf{1}$	801 ± 24	ND
Water Holding Capacity (%)	$\textbf{212} \pm \textbf{4}$	312 ± 9	ND
NH ₄ NO ₃ [As] (mg.kg ⁻¹)	$\textbf{0.9}\pm\textbf{0.1}$	0.7 ± 0.3	16.5 ± 0.5
NH ₄ NO ₃ [Pb] (mg.kg ⁻¹)	$\textbf{1.6}\pm\textbf{0.1}$	0.4 ± 0.0	$\textbf{22.2}\pm\textbf{0.9}$
NH ₄ NO ₃ [Fe] (mg.kg ⁻¹)	18 ± 5	1 ± 0	23265 ± 299

 \rightarrow Selection based on previous lab experiments

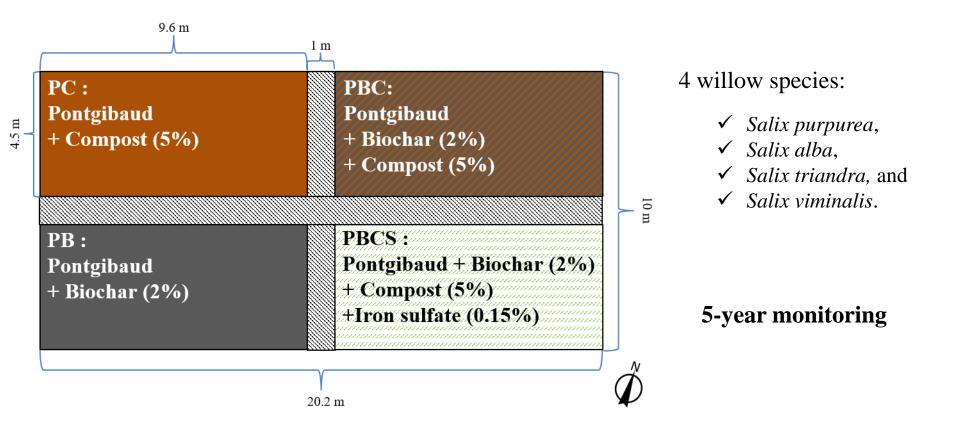
The field experiment

Objectives

Evaluate the effect of three amendments, alone or combined, to ameliorate soil fertility, lower metal(loid) toxicity, and improve willow growth.

>Determine which combination of amendment-willow species allows the valorization of the produced biomass for industrial purposes, based on the regulations.

Field established by **Romain Nandillon** during his PhD Monitoring took over by M. Lebrun, S. Bourgerie, D. Morabito, F. Miard and Y. Chafik



The field experiment

Treatments	pH	CEC (cmol.kg ⁻¹)	C_{org} (%)	OM (%)	N _{tot} (%)	$C_{\text{org}}/N_{\text{tot}}$	[P] (mg.kg ⁻¹)	[K] (mg.kg ⁻¹)
Pg (initial)	4.8 ± 0.0	0.7 ± 0.0	0.3 ± 0.0	0.5	< QL	-	1.1 ± 0.1	15.8±0.2
PB T6	$5.7\pm0.2\ B$	$0.9\pm0.0~\mathrm{B}$	$2.8\pm0.0\ C$	4.8	< QL C	-	$1.7 \pm 0.1 \text{ C}$	$41.4\pm0.3\ C$
PC T6	$5.6\pm0.1\;B$	$1.6\pm0.0\;A$	$2.9\pm0.0\;C$	5.0	$0.1\pm0.0\;B$	21	$3.3\pm0.1\;B$	$59.4\pm1.0\;B$
PBC T6	$7.1\pm0.2\;A$	$1.6\pm0.1\;A$	$6.5\pm0.1\;A$	11.2	$0.2\pm0.0\;A$	39	$5.4\pm0.6\;A$	$98.1\pm3.2\;A$
PBCS T6	$5.1\pm0.4\ B$	$1.5\pm0.0\;A$	$4.8\pm0.1\;B$	8.3	$0.1\pm0.0\;B$	36	$2.3\pm0.1\;B$	$51.6\pm4.0\ C$

✤ All the parameters were increased by the amendments

♦ <u>pH</u>

- ✓ Biochar and/or compost increased pH \rightarrow liming effect due to high pH of biochar and compost
- ✓ Best increase with combined BC \rightarrow higher total amendment
- ✓ S reduced pH (until P level) \rightarrow acidic pH of the iron sulfate

Treatments	pH	CEC (cmol.kg ⁻¹)	C_{org} (%)	OM (%)	N _{tot} (%)	$C_{\text{org}}/N_{\text{tot}}$	[P] (mg.kg ⁻¹)	[K] (mg.kg ⁻¹)
Pg (initial)	4.8 ± 0.0	0.7 ± 0.0	0.3 ± 0.0	0.5	< QL	-	1.1 ± 0.1	15.8±0.2
PB T6	$5.7\pm0.2\;B$	$0.9\pm0.0\;B$	$2.8\pm0.0\;C$	4.8	< QL C	-	$1.7\pm0.1\;C$	$41.4\pm0.3\;C$
PC T6	$5.6\pm0.1\;B$	$1.6\pm0.0\;A$	$2.9\pm0.0\;C$	5.0	$0.1\pm0.0\;B$	21	$3.3\pm0.1\;B$	$59.4\pm1.0\;B$
PBC T6	$7.1\pm0.2\;A$	$1.6\pm0.1\;A$	$6.5\pm0.1\;A$	11.2	$0.2\pm0.0\;A$	39	$5.4\pm0.6\;A$	$98.1\pm3.2\;A$
PBCS T6	$5.1\pm0.4\ B$	$1.5\pm0.0\;A$	$4.8\pm0.1\;B$	8.3	$0.1\pm0.0\;B$	36	$2.3\pm0.1\;B$	$51.6\pm4.0\;C$

✤ All the parameters were increased by the amendments

✤ <u>CEC</u>

- ✓ Biochar and/or compost increased CEC \rightarrow high CEC of the amendments (especially compost)
- ✓ Best increase with compost \rightarrow low CEC of biochar compared to compost

Treatments	pH	CEC (cmol.kg ⁻¹)	C_{org} (%)	OM (%)	N _{tot} (%)	$C_{\text{org}}/N_{\text{tot}}$	[P] (mg.kg ⁻¹)	[K] (mg.kg ⁻¹)
Pg (initial)	4.8 ± 0.0	0.7 ± 0.0	0.3 ± 0.0	0.5	< QL	-	1.1 ± 0.1	15.8±0.2
PB T6	$5.7\pm0.2\;B$	$0.9\pm0.0\;B$	$2.8\pm0.0\;C$	4.8	< QL C	-	$1.7\pm0.1\;C$	$41.4\pm0.3\;C$
PC T6	$5.6\pm0.1\;B$	$1.6\pm0.0\;A$	$2.9\pm0.0\;C$	5.0	$0.1\pm0.0\;B$	21	$3.3\pm0.1\;B$	$59.4\pm1.0\;B$
PBC T6	$7.1\pm0.2\;A$	$1.6\pm0.1\;A$	$6.5\pm0.1\;A$	11.2	$0.2\pm0.0\;A$	39	$5.4\pm0.6\;A$	$98.1\pm3.2\;A$
PBCS T6	$5.1\pm0.4\;B$	$1.5\pm0.0\;A$	$4.8\pm0.1\;B$	8.3	$0.1\pm0.0\;B$	36	$2.3\pm0.1\;B$	$51.6\pm4.0\;C$

✤ All the parameters were increased by the amendments

• $\underline{C}_{\underline{\text{org}}} / \underline{OM}$

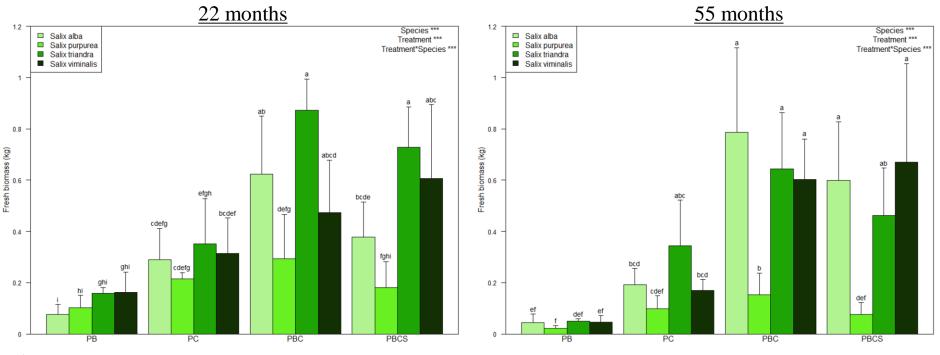
- ✓ All treatments increased C_{org} & OM → both compost and biochar are a source of C and OM + improvement of microbial activity
- ✓ Best increase with combined BC \rightarrow higher total amendment
- ✓ S reduced C_{org} & OM → acidic pH reduced microbial activity

Treatments	pH	CEC (cmol.kg ⁻¹)	C_{org} (%)	OM (%)	N _{tot} (%)	C_{org} / N_{tot}	[P] (mg.kg ⁻¹)	[K] (mg.kg ⁻¹)
Pg (initial)	4.8 ± 0.0	0.7 ± 0.0	0.3 ± 0.0	0.5	< QL	-	1.1 ± 0.1	15.8±0.2
PB T6	$5.7\pm0.2\;B$	$0.9\pm0.0\;B$	$2.8\pm0.0\;C$	4.8	< QL C	-	$1.7\pm0.1\;C$	$41.4\pm0.3\;C$
PC T6	$5.6\pm0.1\;B$	$1.6\pm0.0\;A$	$2.9\pm0.0\ C$	5.0	$0.1\pm0.0\;B$	21	$3.3\pm0.1\;B$	$59.4\pm1.0\;B$
PBC T6	$7.1\pm0.2\;A$	$1.6\pm0.1\;A$	$6.5\pm0.1\;A$	11.2	$0.2\pm0.0\;A$	39	$5.4\pm0.6\;A$	$98.1\pm3.2\;A$
PBCS T6	$5.1\pm0.4\ B$	$1.5\pm0.0\;A$	$4.8\pm0.1\;B$	8.3	$0.1\pm0.0\;B$	36	$2.3\pm0.1\;B$	$51.6\pm4.0\;C$

✤ All the parameters were increased by the amendments

✤ <u>Phosphorus and Potassium</u>

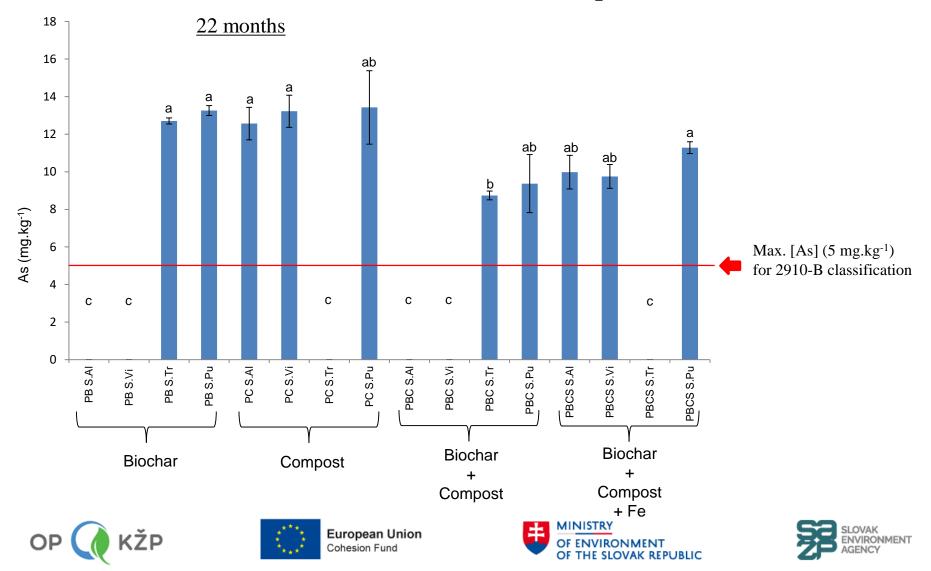
- ✓ All treatments increased P & K contents → both compost and biochar are a source of nutrients + improvement of microbial activity (nutrient cycling)
- ✓ Highest increase with C (\pm B) → compost contains more nutrients than biochar
- ✓ S reduced P & K→ acidic pH reduced microbial activity

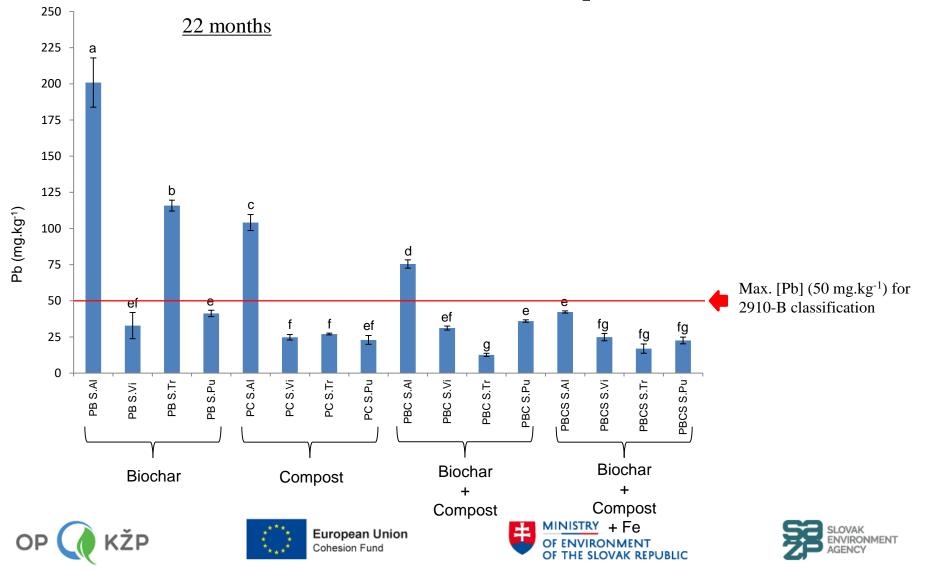


The plant biomass production

✤ <u>Treatment effect</u>

- ✓ Highest biomass on PBC → amelioration of soil conditions best with biochar + compost
- ✤ Species effect
 - ✓ 22 months: *Salix triandra* best
 - ✓ 55 months: Salix alba Salix triandra Salix vimalis > Salix purpurea





The As accumulation in the plants

The Pb accumulation in the plants

Take home message

✤ Soil

- ✓ Amelioration of fertility: pH, nutrients, OM
- \checkmark As and Pb immobilization

BEST: PBC

✤ <u>Plants</u>

- ✓ Success to implement a vegetation cover (+ natural revegetation on the amended plots)
- ✓ Accumulation of As and Pb in stems makes it possible to use this biomass for industrial purposes BEST: Salix purpurea

Associations biochar + compost with Salix purpurea BEST

Recommendations: use multiple species (those useable for industrial purposes)

Thank you for your attention

