

SLOVAK ENVIRONMENT AGENCY

is implementing an activity

INTERNATIONAL CONFERENCE

CONTAMINATED SITES 2022

TRNAVA, SLOVAK REPUBLIC, 12 – 14 OCTOBER 2022

The activity has been implemented within the framework of national project

Information and providing advice on improving the quality of environment in Slovakia.

The project is cofinanced by Cohesion Fund of the EU under Operational programme Quality of Environment.

www.op.kzp.sk www.minzp.sk www.sazp.sk

Demonstration and evaluation of an on-site treatment train for PFAS polluted groundwater

Laura del Val Alonso - Eurecat, Spain

laura.delval@eurecat.org

Laura del Val¹, Carme Bosch¹, Lutz Ahrens², Aina Soler¹, Anja Enell³, Dan Berggren Kleja³, Philip McCleaf⁴, Patrik Hollman⁵, Helena Hinrichsen⁶, Hector de Buen⁷, Michael Pettersson³, Dahn Rosenquist⁸, Ricard Mora⁷, Leónidas Pérez¹, Oscar Skirfors², Sofia Bjälkefur⁴ and Jessica Mejide¹

¹ Eurecat, ² Swedish University of Agricultural Sciences, ³ Swedish Geotechnical Institute, ⁴ Uppsala Vatten och Avfall AB, ⁵ Nova Diamant, ⁶ Envytech Solutions AB, ⁷ ESOLVE SL, ⁸ Laqua Treatments AB

The activity has been implemented within the framework of national project Information and providing advice on improving the quality of environment in Slovakia.

The project is cofinanced by Cohesion Fund of the EU under Operational programme Quality of Environment.

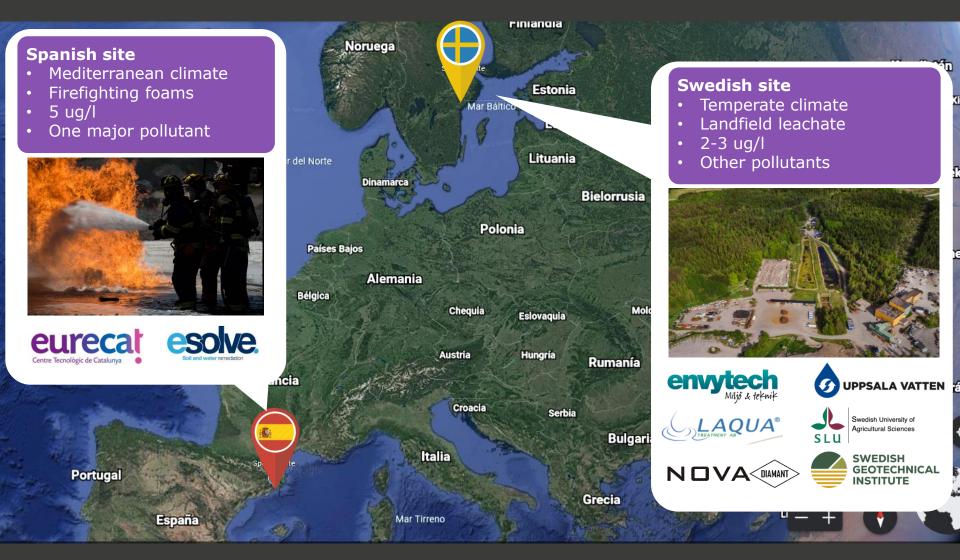
PFAS = Per- and polyfluoroalkyl substances

PFAS

PFOS (Perfluorooctanesulfonic acid)

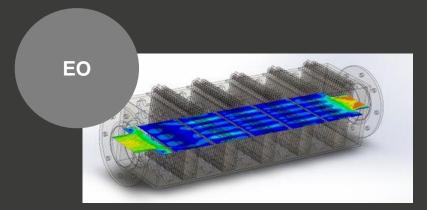
PFOA (Perfluorooctanoic acid)

Objectives of the LIFE SOuRCE project



- Effective and economic remediation solution for PFAS contaminated Groundwater
- Remove long-chain (LC-PFAS) (> 99%) and short-chain (SC-PFAS) (> 95%),
- Aiming to destroy PFAS
- EU DW Directive targets (0.1 μ g/L individual PFAS and 0.5 μ g/L for PFAS in total)
- Affordable costs (up to 0.1 €/m³ treated Groundwater)
- Modular solution applicable to a broad range of contaminated site characteristics

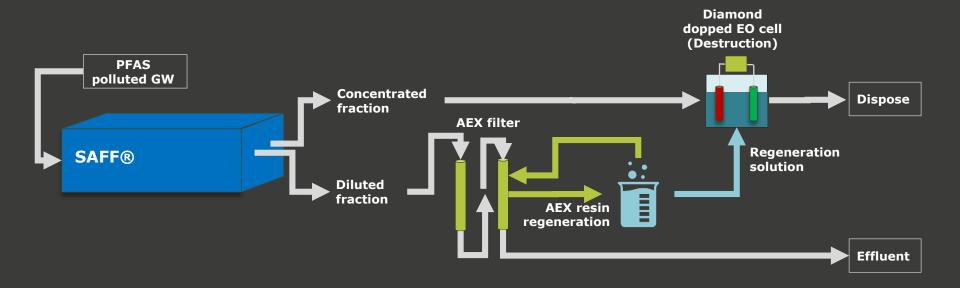
LIFE SOuRCE Solution



Phytoremediation

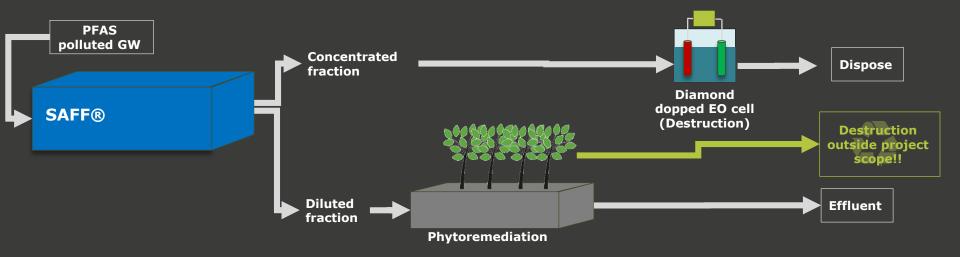
Anion Exchange Filters

Diamond Dopped electrodes Electrooxidation cell



LIFE SOuRCE Treatment train

Configuration Spanish site

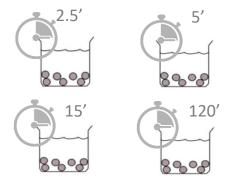


LIFE SOuRCE Treatment train

Configuration Swedish site

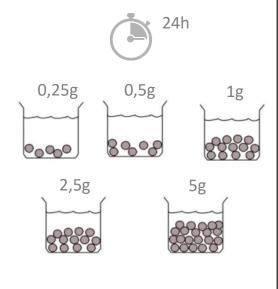
Bench scale tests with each technology

Treatment technology	Objective of bench scale test
SAFF	Checking the removal efficiency of short and long chain PFAS with each water matrix
AEX	 Select from the three identified resins from Purolite (PFA694, A532E and A592EBF) the most suited for PFAs removal. Estimate the adsorption capacity of the most suitable resin. Select the most efficient regeneration solution for the selected resin.
EO	Optimization of electric consumption for treatment of regeneration solution
PHYTO	Testing of three different plant species and substrates for optimization of PFAS removal.


Bench scale tests with AEX - Methods

1. Requilibrium rate & resin selection

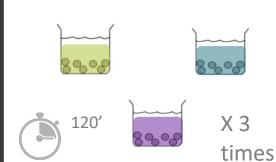
- PFA694E
- A592EBF
- A532E
- GAC (for reference)


Spiked groundwater: 6:2FTS, PFPeA and PFBA

2. Adsorption capacity

PFA694E

Spiked groundwater: 6:2FTS, PFPeA and PFBA

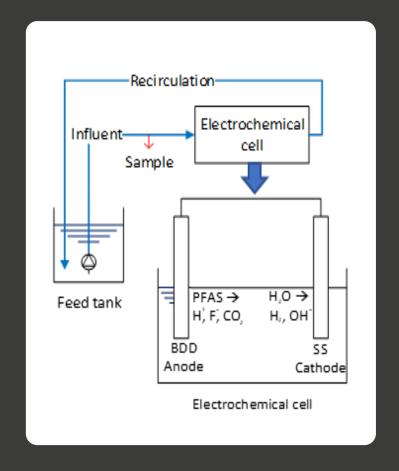


3. Regeneration strategy

PFA694E & spiked GW overnight

Resine with regeneration solutions:

- 0.5%NH₄OH + 0.5%NH₄Cl
- 80%CH₃OH + 1%NH₄Cl
- 80%CH₃CH₂OH + 1%NH₄CI



Bench scale test with Electrooxidation cell - Experimental set-up

Treatment of used regeneration solutions with different intensities during 4h:

- 5A
- 15A
- 25A

Other technologies being tested

The LIFE SOuRCE project (LIFE20 ENV/ES/000880) has received funding from the LIFE Programme of the

Thank you! Tack! ¡Gracias!

laura.delval@eurecat.org

www.life-source.se

Linkedin: life-source-project

Twitter: LIFE SOuRCE

