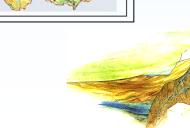

REMEDIATION FEASIBILITY STUDY


OF A FLOODPLAIN OF MORAVA RIVER IN CZECH REPUBLIC CONTAMINATED BY CHLORINATED ETHENES

RNDr. S. Mikita, PhD. et al.

Contaminated sites 2022, Senec

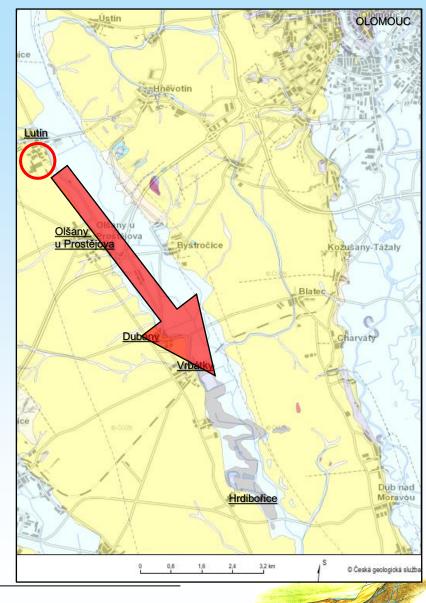
EOtes

History of locality

Source:

activities in former company SIGMA Lutín a.s. (their main products were water pumps)

Contamination:


chlorinated aliphatic hydrocarbons (they were used as degreasers)

Affected area:

unsaturated and saturated zone (in the company premises and its immediate surroundings)

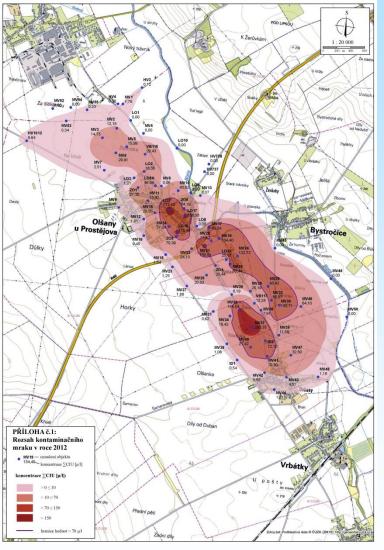
Solutions:

remediation actions only in ambient area of the source (1997 – 2006)

13. October 2022

Additional geological investigation

- 2008 (ALTEC International s.r.o.): "AR update"
- 2010 2012 (DEKONTA, a.s.) : supplementary survey and verification of suitable remedial technologies



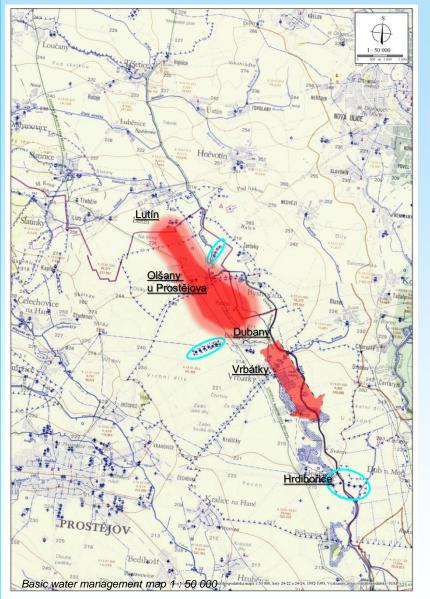
Contaminated sites 2022, Senec

= Otest

13. October 2022

Situation in 2012

Spread of pollution (total CIU) - situation in 2012


PLUME OF CHLORINATED HYDROCARBONS (cutted off)

- Quaternary aquifer of the Morava River
- spreading in the SE direction approx. 50 m/year
- range: 5 km x 1 km, thicknes~25 m

KEY CONTAMINANTS

- <u>PCE (tetrachlorethen)</u> - toxic, potential human carcinogen max 70 - 152 μg.l⁻¹ / 10 μg.l⁻¹
- <u>TCE (trichlorethen)</u>
 - toxic, potential human carcinogen
 - max 52,9 266 μg.l⁻¹ / <mark>35 μg.l⁻¹</mark>
 - 1,2-cis-DCE (dichlorethen)
 - the most extensive
 - toxic, potential human carcinogen
 - max 45,2 122 µg.l⁻¹/ 30 µg.l⁻¹
- VC (vinylchlorid)
 - high toxic human carcinogen !
 - max 61 150 µg.l⁻¹ / 10 µg.l⁻¹

Impact on receptors

Affected areas

Olšany u Prostějova, Hablov, Dubany na Hané, Bystořice (4 000 residenst, 120 hectares)

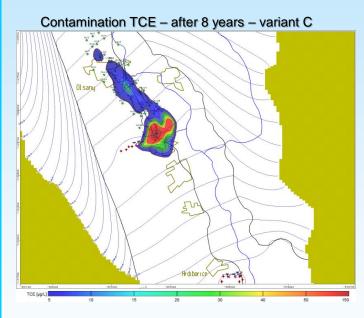
Receptors

- 1. Residents of the affected municipalities
- <u>domestic wells</u> irrigation, washing, showering
- 2. Farming facilities: Olšany, Hablov, Vrbátky
- <u>large capacity wells</u>: drinking water livestock breeding, utility water - irrigation, washing, etc.

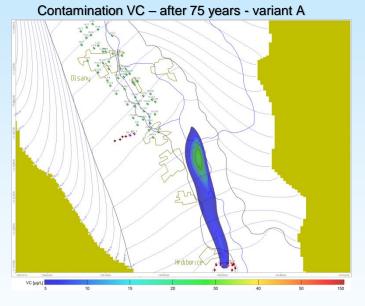
Another threats

CHOPAV - Quarter of the Morava River

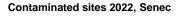
- WS Olšany: not yet in operation due to possible CIU contamination
- WS Dubany: 4,8 l.s⁻¹ / 30 l.s⁻¹ (Olšany, Prostějov)
- WS Hrdibořice: 32 I.s⁻¹ / 40 I.s⁻¹ (Hrdibořice, Prostějov)



Potentional impact without the remediation


A hydraulic and transport model of contaminants spreading (DEKONTA, a.s. 2010) -

3 scenarious of water collection in the catchment area of Dubany na Hané :


- Variant A amount of water 4,8 l.s⁻¹.
- Variant B amount of water 9,6 I.s⁻¹,
- Variant C amount of water 14,4 I.s⁻¹.

 the influence of groundwater quality in the Dubany catchment area is strongly dependent on the amount of groundwater withdrawn

- the spreading speed of the contamination cloud is approx. 50 m/year
- contaminated groundwater with TCE, 1,2-cisDCE and VC will reach the catchment area in Hrdibořice in approx. 50-70 years

13. October 2022

Goals and target parameters for remediation

Results from AAR (2012): to eliminate the health risk and the risk of deterioration of the groundwater quality, an <u>active</u> remedial intervention is necessary

The main goals of the remedial actions are:

- 1. Minimize the exposure of identified risk beneficiaries by reducing CIE concentrations so that the level of acceptable risk is not exceeded.
- 2. Inform local residents about the risks associated with the use of groundwater.
- 3. To avoid contamination of catchment areas and supply wells

Target parameters for remediation of saturated zone:

(for the exposure scenario: use of groundwater for utility purposes - washing / showering by local residents)

Key contaminants with target parameters	Contaminated area (m²)	Thicknes of aquifer (m)	contaminated	Volume of contaminated water (m ³)	Weight of contaminants (kg)
TCE - nad 35 µg.l ⁻¹	40 0000	30	12 000 000	1 800 000	63
1,2-cis-DCE - nad 30 µg.I ⁻¹	40 0000	30	12 000 000	1 800 000	54
VC - nad 10 µg.l⁻¹	60 0000	30	18 000 000	2 700 000	27
suma CIU - nad 70 µg.I⁻¹	1 193 287	30	35 798 610	5 369 792	376

Strategies for remediation

5 variants of remedial proposals

- Variant No. 1 No action
- Variant No. 2 Institutional measures
- Variant No. 3 Active in-situ remediation
- Variant No. 4 Intenzification of an active in-situ remediation
- Variant No. 5 Full-scale remediation

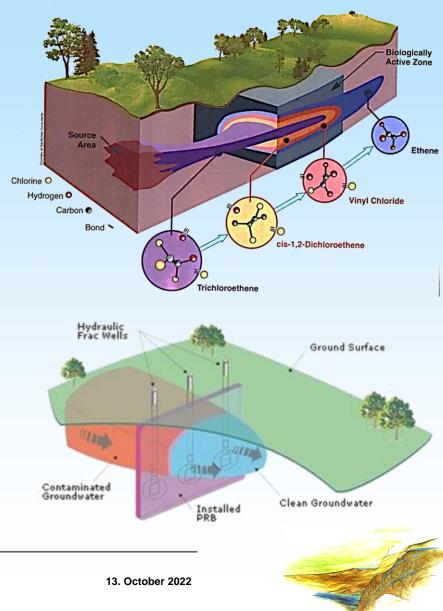
Pilot tests

- Contaminant reduction using nanoparticle suspension Fe (NZVI) / + BRD,
- Biological reductive dehalogenation (BRD),
- Airsparging combined with ventingem.

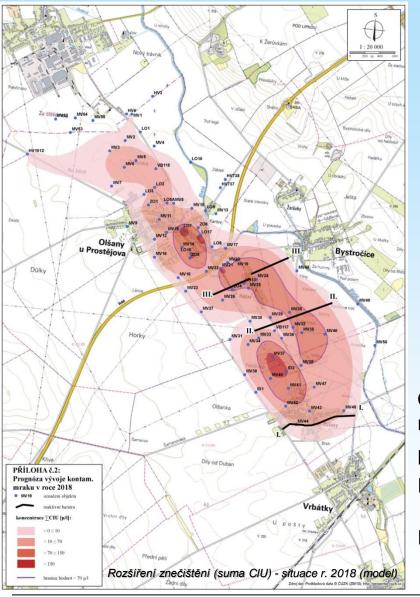
Variant No. 4: BRD + ISCR – the most suitable variant

- shorter duration of remediation;
- creation of faster and more significant redox conditions in aquifer and set up of optimal conditions for BRD;
- sustainable and final effect of the remediation solution;
- less negative impact on the surrounding community and environment.

ISCR + BRD - principles


Principles of the remediation method:

- support of natural biodegradation by autochthonous organisms in the environment.


- by regular application of a suitable substrate into the saturated zone a reducing conditions will be created what enhance degradation of chlorinated hydrocarbons: PCE \rightarrow TCE \rightarrow DCE \rightarrow VC \rightarrow ethen \rightarrow ethan + CO₂.

Remediation intervention procedure:

- systematic application of organic substrate and nutrients to injection wells installed in lines in a direction perpendicular to the contamination spreading
- initial support of the ISCR method by targeted application of NZVI

ISCR + BRD - setup

3 lines of injection wells for BRD

- line length approx. 1 km
- the distance of the wells from each other is about 10 m
- a total of 300 wells (100 pcs in each line)
- depth of wells approx. 30 m

Whey application

- in the form of an aqueous solution
- delivery by tanker
- 150 l/well/application
- frequency 1 x 3 months
- nutrients 1 x 8 months

Intensification: targeted application of NZVI suspension by the direct-push method into the inflow part of the remediation line

Other works: build a road, remediation and postremediation monitoring, well renovation,...

Estimated duration: totally 20 years in 2 stages:

I. stage: 6 years (financing from the EU), approx. 5,4 million EUR

II. stage: 14 years (financing from the national program of the CR), approx. 4 million EUR

STOP 1