

SLOVAK ENVIRONMENT AGENCY

is implementing an activity

INTERNATIONAL CONFERENCE CONTAMINATED SITES ZNEČISTENÉ ÚZEMIA MEDZINÁRODNÁ KONFERENCIA

INTERNATIONAL CONFERENCE

CONTAMINATED SITES 2018

BANSKÁ BYSTRICA, SLOVAK REPUBLIC, 8 – 10 OCTOBER 2018

The activity has been implemented within the framework of national project **Information and providing advice on improving the quality of environment in Slovakia**. The project is cofinanced by Cohesion Fund of the EU under Operational programme Quality of Environment.

www.op.kzp.sk

www.minzp.sk

Influence of two amendments on phyto- and sanitary availability of metals in highly contaminated soils: a greenhouse study

Janus Adeline LGCgE – Yncréa Hauts-de-France, France adeline.janus@yncrea.fr

The activity has been implemented within the framework of national project **Information and providing advice on improving the quality of environment in Slovakia**. The project is cofinanced by Cohesion Fund of the EU under Operational programme Quality of Environment.

Introduction

In 2006, 39 countries (Europe):

- 3 million of sites: pollutant activities
- 1.8 million of sites: potentially contaminated

Introduction

Context

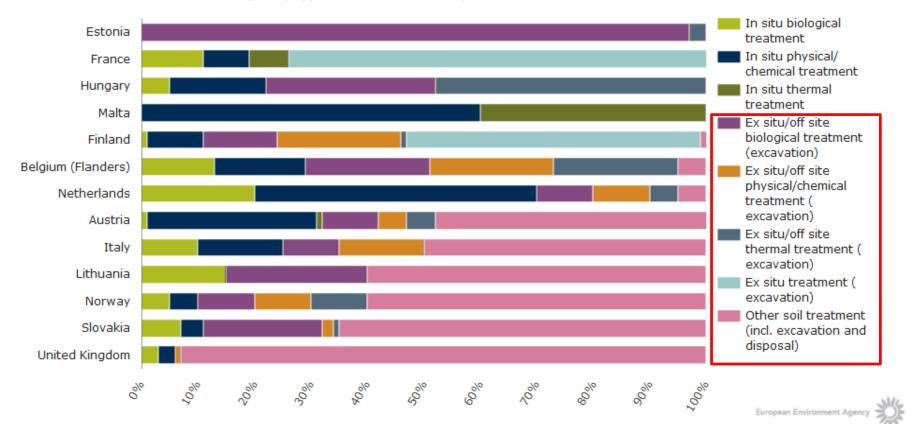


Chart — Most frequently applied remediation techniques for contaminated soil

Inappropriate:

- ✓ Expensive
- ✓ Economically unfeasible on a large scale

Introduction

Context

New technic: adding amendments to decrease the metal availability phosphate compounds, liming materials, metal oxides, biochar ... used alone or in combination

Objective of the work:

Evaluate the ability of two amendments (biochar and iron grit) to immobilize metals in contaminated soils under greenhouse conditions

Soils and amendments

MAZ:

- Brownfield soil -
- Old settling bassin (plastic industry) -

ME:

- Agricultural soil
- Near a former lead smelter

	Cd	Pb	Zn	Cu	pH _{water}	Corg	Total CaCO ₃
		mg kg	I ⁻¹ DW			g kg⁻¹	g kg ⁻¹ DW
MAZ	5	84	658	86	7.9	48	438
ME	15	812	1016	37	7.5	18	4
Threshold*	0.7	24	62	12			6

* Usual concentrations in agricultural soils

Soils and amendments

MAZ:

- Brownfield soil
- Old settling bassin (plastic industry)

Biochar (BC):

- Made from hardwood plants
- 400°C 12 h
- < 4 mm

ME:

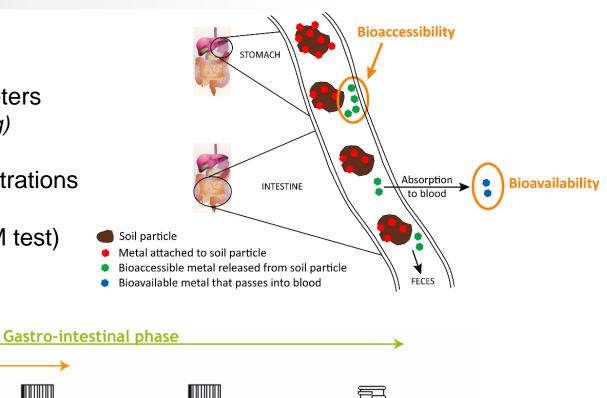
- Agricultural soil
- Near a former lead smelter

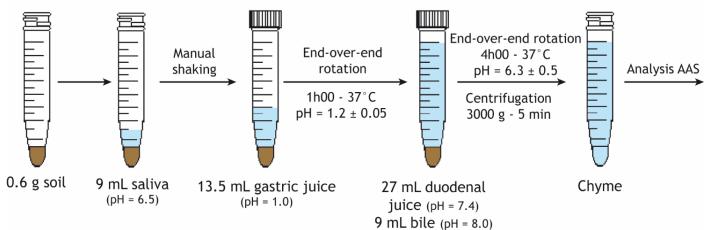
Iron grit (IG):

- 0.12 0.30 mm
- Fe: 98.3 %

	Cd	Pb	Zn	Cu	pH _{water}	CEC
	(mg kg ⁻¹ DW)					(cmol ⁺ kg ⁻¹)
BC	1.0	24.2	12	12	8.4	0.9
IG	0.5	25.8	168	2490	10.4	-

Materials and methods **Experimental setup** 4 treatments for each soil (2.1 kg pot⁻¹): Untreated soil (T) 1) Soil + 2% (*w/w*) BC (BC) Equilibrium in greenhouse 2) 3) Soil + 1% (*w/w*) IG (IG) during 5 weeks (75 % WHC) 4) Soil + 2% (w/w) BC + 1% (w/w) IG (BC/IG) Harvest 6 weeks after 1.5 g of ryegrass (lolium perenne) sowing

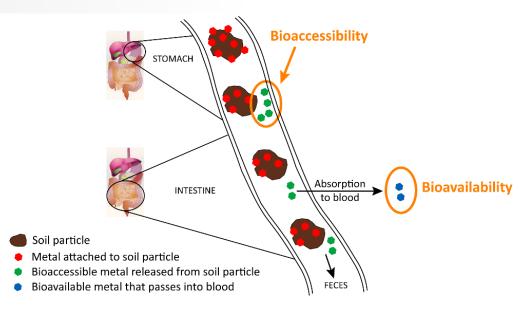



Analyses

Soils:

- 1) Physico-chemical parameters (pH, CEC, total CaCO₃, Corg)
- 2) Metal pseudototal concentrations
- 3) Oral bioaccessibility (UBM test)

Gastric phase



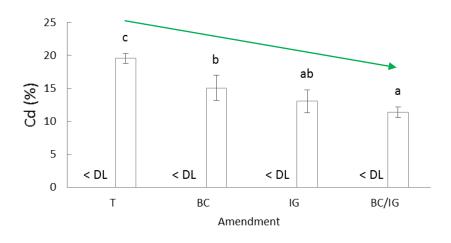
Analyses

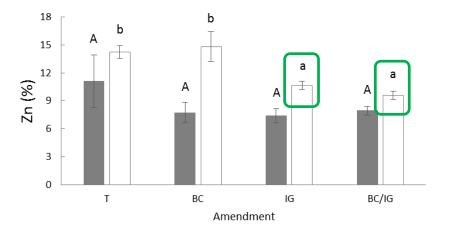
Soils:

- 1) Physico-chemical parameters (pH, CEC, total CaCO₃, Corg)
- 2) Metal pseudototal concentrations
- 3) Oral bioaccessibility (UBM test)

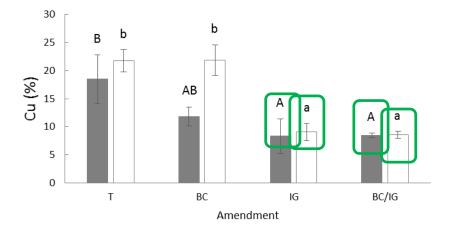
Plants:

- 1) Aerial biomass
- 2) Metal concentrations in shoots



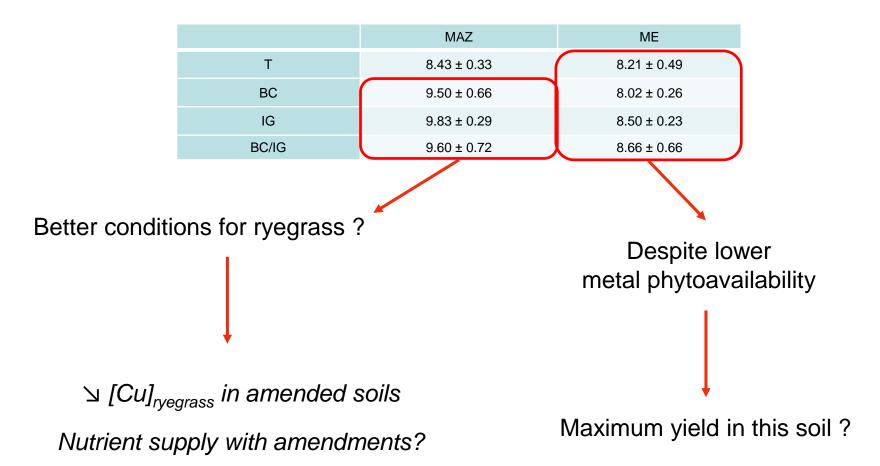

Soil physicochemical parameters

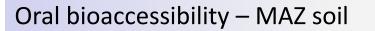
MAZ	Unamended	2 % Biochar	1 % Iron Grit	2 % Biochar + 1 % Iron Grit
pH _{water}	7.85 ± 0.05	7.93 ± 0.04	7.90 ± 0.02	7.94 ± 0.04
Total CaCO ₃ (g kg ⁻¹)	457 ±19	441 ± 15	475 ± 7	380 ± 28
Corg (g kg ⁻¹)	44.5 ± 3.4	40.7 ± 5.9	47.4 ± 10.7	44.7 ± 2.2
CEC (cmol ⁺ kg ⁻¹)	7.9 ± 0.5	6.7 ± 0.6	7.5 ± 0.1	7.5 ± 0.2
Cd (mg kg ⁻¹ DW)	3.4 ± 0.8	4.2 ± 0.2	3.9 ± 0.4	3.7 ± 0.3
Pb (mg kg ⁻¹ DW)	62.4 ± 25.3	76.5 ± 9.5	87.2 ± 9.7	73.3 ± 5.3
Zn (mg kg ⁻¹ DW)	456 ± 99	531 ± 41	537 ± 67	503 ± 19
Cu (mg kg ⁻¹ DW)	52.4 ± 15.6	65.1 ± 5.7	98.4 ± 33.4	80.6 ± 5.5

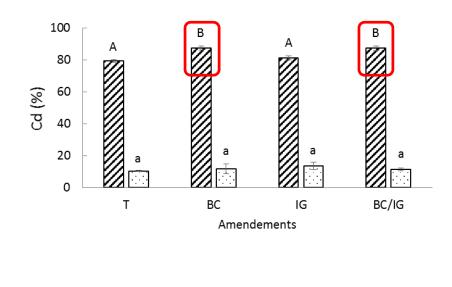

ME	Unamended	2 % Biochar	1 % Iron Grit	2 % Biochar + 1 % Iron Grit
pH _{water}	7.97 ± 0.13	7.90 ± 0.06	7.98 ± 0.04	8.02 ± 0.03
Total CaCO ₃ (g kg ⁻¹)	2.96 ± 0.30	3.59 ± 0.79	2.43 ± 0.36	3.53 ± 0.38
Corg (g kg ⁻¹)	17.60 ± 1.26	17.02 ± 0.99	19.43 ± 0.64	20.36 ± 0.74
CEC (cmol ⁺ kg ⁻¹)	12.58 ± 0.76	12.00 ± 0.41	12.32 ± 0.65	11.80 ± 0.21
Cd (mg kg ⁻¹ DW)	13.8 ± 0.2	13.5 ± 0.2	12.9 ± 0.4	12.5 ± 1.0
Pb (mg kg ⁻¹ DW)	763 ± 12	755 ± 20	690 ± 32	671 ± 42
Zn (mg kg ⁻¹ DW)	971 ± 23	953 ± 31	893 ± 18	885 ± 18
Cu (mg kg ⁻¹ DW)	32.0 ± 0.6 a	30.8 ± 1.8 a	51.9 ± 10.1 b	51.4 ± 3.9 b

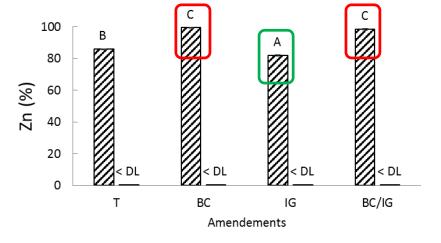
Metal phytoavailability

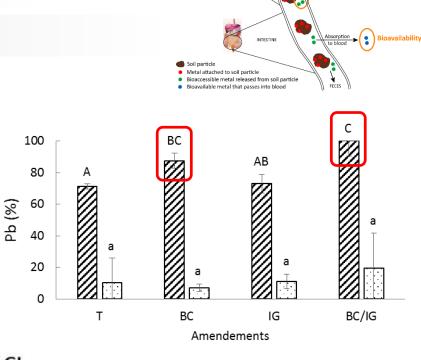
MAZ 🗆 ME

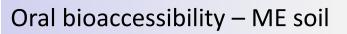

> MAZ:

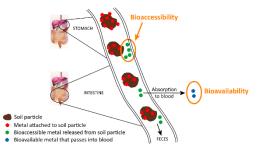

 ✓ ↘ with IG (alone or in combination) for Cu

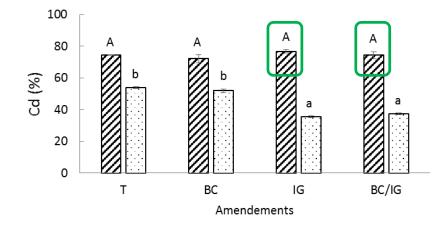

- \checkmark \checkmark with the 3 amendments for Cd
- ✓ ↘ with IG (alone or in combination) for Zn and Cu
 12

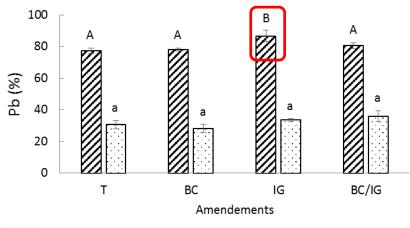

[►] ME:

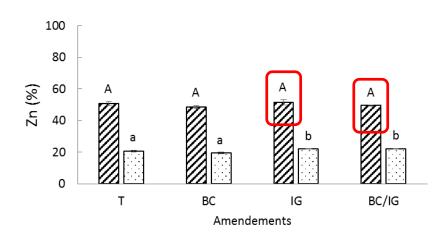

Plant biomass (g pot⁻¹)

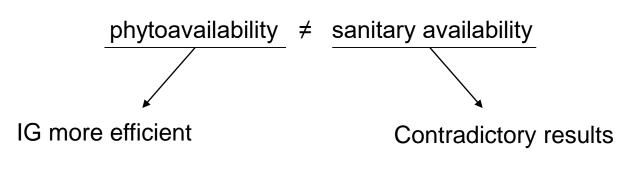





Bioaccessibility




- Gastric phase:
 - ✓ ↗ with BC (alone or in combination) for Cd, Pb and Zn
 - \checkmark \checkmark with IG for Zn
- Gastrointestinal phase:
 - ✓ No effect


- Gastric phase:
 - \checkmark 7 with IG for Pb
- Gastrointestinal phase:
 - ✓ ↘ with IG (alone or in combination) for Cd
 - ✓ ↗ with IG (alone or in combination) for Zn
 15

Conclusion

MAZ	ME			
Phytoavailability				
IG : ∖ Cu	BC/IG : ↘ Cd			
IG.⊻Cu	IG : ↘ Zn and Cu			
Biomass				
IG : ↗	/			
Oral bioaccessibility : gastric phase				
BC : ↗ Cd, Pb and Zn	IG : ↗ Pb			
IG : ∖₂ Zn				
Oral bioaccessibility : gastrointestinal phase				
/	IG : ↘ Cd			
/	IG : ↗ Zn			

Conclusion

1. Different efficiency according to the soil and the metal tested

2. Tests should be choose according to the future use of the site

3. Importance of *ex situ* tests before applying amendments in the field

Thank you for your attention

Janus Adeline LGCgE – Yncréa Hauts-de-France, France adeline.janus@yncrea.fr

